Randomized subspace methods for high-dimensional model-based derivative-free optimization

Yiwen Chen

Department of Mathematics University of British Columbia (Okanagan)

WCOM 2025, Kelowna, Canada

October 18, 2025

Based on joint works with Warren Hare and Amy Wiebe

Derivative-free optimization (DFO)

Consider the optimization problem

$$\min_{x\in\mathbb{R}^n}f(x)$$

where f is given by a blackbox:

$$x \longrightarrow f(x)$$

Derivative-free optimization is the mathematical study of optimization algorithms that do not use derivatives

Note: It does not mean that the derivatives do not exist

Model-based DFO

Model-based DFO methods:

- Use function values to build an approximation model of the objective
- Use the model to guide future iterations

Limitations:

- ullet Number of function evals. is too high for large problems (npprox 1000)
- ullet Primarily designed for small- to medium-scale problems ($n \leq 100$)

Randomized subspace model-based DFO

Idea:

- 1. Select a low-dimensional affine subspace
- 2. Build and optimize a model to compute a step in this subspace
- 3. Change the affine subspace at the next iteration

Model-based trust-region (MBTR) algorithm

for k = 0, 1, ... do

Construct a model m_k in \mathbb{R}^n :

$$m_k(s) = f(x_k) + g_k^{\top} s + \frac{1}{2} s^{\top} H_k s$$

Approximately solve the trust-region subproblem in \mathbb{R}^n :

$$s_k pprox \operatorname*{argmin}_{s \in \mathbb{R}^n} m_k(s), \quad s.t. \quad \|s\| \leq \Delta_k$$

Evaluate $f(x_k + s_k)$ and apply descent ratio test

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m_k(\mathbf{0}) - m_k(s_k)} = \frac{true\ decrease}{predicted\ decrease}$$

Accept/reject step based on ρ_k and update trust region radius

Model quality requirement: Q-fully linear models

Definition. A model $m : \mathbb{R}^n \to \mathbb{R}$ is fully linear in $B(x, \Delta)$ if there exist $\kappa_f(x), \kappa_g(x) > 0$ s.t. for all $s \in \mathbb{R}^n$ with $||s|| \leq \Delta$,

$$|f(x+s) - m(x+s)| \le \kappa_f(x)\Delta^2$$

$$\|\nabla f(x+s) - \nabla m(x+s)\| \le \kappa_g(x)\Delta$$

Model quality requirement: Q-fully linear models

Definition. A model $m : \mathbb{R}^n \to \mathbb{R}$ is fully linear in $B(x, \Delta)$ if there exist $\kappa_f(x), \kappa_g(x) > 0$ s.t. for all $s \in \mathbb{R}^n$ with $||s|| \le \Delta$,

$$|f(x+s) - m(x+s)| \le \kappa_f(x)\Delta^2$$

$$\|\nabla f(x+s) - \nabla m(x+s)\| \le \kappa_g(x)\Delta$$

Definition. [Cartis, Roberts, 2023]

Let $Q \in \mathbb{R}^{n \times p}$. A model $\widehat{m} : \mathbb{R}^p \to \mathbb{R}$ is Q-fully linear in $B(x, \Delta)$ if there exist $\kappa_f(x), \kappa_g(x) > 0$ s.t. for all $\widehat{s} \in \mathbb{R}^p$ with $\|\widehat{s}\| \leq \Delta$,

$$|f(x + Q\widehat{s}) - \widehat{m}(\widehat{s})| \le \kappa_f(x)\Delta^2$$
$$\|Q^{\top}\nabla f(x + Q\widehat{s}) - \nabla \widehat{m}(\widehat{s})\| \le \kappa_g(x)\Delta$$

Note: Check out [Chen, Hare, Wiebe, 2024] for construction & management procedures!

Subspace quality requirement: α -well-aligned matrices

Let $x + D\mathbb{R}^p$ be the affine subspace

Definition. [Cartis, Roberts, 2023] Let $\alpha \in (0,1)$. We say that $D \in \mathbb{R}^{n \times p}$ is α -well-aligned for f at x if

$$||D^{\top}\nabla f(x)|| \ge \alpha ||\nabla f(x)||$$

Subspace quality requirement: α -well-aligned matrices

Let $x + D\mathbb{R}^p$ be the affine subspace

Definition. [Cartis, Roberts, 2023] Let $\alpha \in (0,1)$. We say that $D \in \mathbb{R}^{n \times p}$ is α -well-aligned for f at x if

$$||D^{\top}\nabla f(x)|| \ge \alpha ||\nabla f(x)||$$

Theorem. [Dzahini, Wild, 2024] (Idea: Johnson–Lindenstrauss Lemma) Let $\alpha, \delta \in (0,1)$. Suppose $p \geq 4(1-\alpha)^{-2} \ln(1/\delta)$ and let $D_{ij} \sim \mathcal{N}(0,1/p)$ Then,

 $\mathbb{P}\left[D \text{ is } \alpha\text{-well-aligned for } f \text{ at } \mathbf{x}\right] \geq 1 - \delta$

A quick comparison

	[CartisRoberts23]	[DzahiniWild24]	[ChenHareWiebe24]
Problem	Deterministic	Stochastic	Deterministic
Model	Linear	Linear	Quadratic
Sample set	Completely resample	Completely resample	Reuse previous points
Subspace	No discussion on p	Lower bound on p	Lower bound on $p_{ m rand}$

Looks good, but...

Haha, my problem has constraints!

(C, Q)-fully linear models

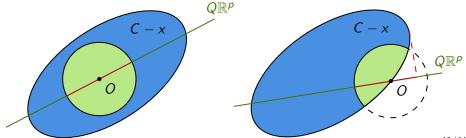
Let C be the constraint set (convex, closed, nonempty interior)

Definition. [Chen, Hare, Wiebe, 2025]

Let $Q \in \mathbb{R}^{n \times p}$. A model $\widehat{m} : \mathbb{R}^p \to \mathbb{R}$ is (C, Q)-fully linear in $B(x, \Delta)$ if there exist $\kappa_f(x), \kappa_g(x) > 0$ s.t. for all $\widehat{s} \in Q^\top(C - x)$ with $\|\widehat{s}\| \le \Delta$,

$$|f(x+Q\widehat{s})-\widehat{m}(\widehat{s})| \leq \kappa_f(x)\Delta^2$$

$$\max_{\substack{d \in Q^{\top}(C-x) \\ \|d\| \leq 1}} \left| \left(Q^{\top} \nabla f(x + Q\widehat{s}) - \nabla \widehat{m}(\widehat{s}) \right)^{\top} d \right| \leq \kappa_{g}(x) \Delta$$



10 / 14

α -well-aligned matrices (convex-constrained version)

Let $x + D\mathbb{R}^p$ be the affine subspace and D = QR be the QR factorization

Definition. [Chen, Hare, Wiebe, 2025]

Let $\alpha \in (0,1)$. We say that $D \in \mathbb{R}^{n \times p}$ is α -well-aligned for f and C at x if

$$\left| \min_{\substack{d \in C - x \\ \|d\| \le 1}} \nabla f(x)^{\top} Q Q^{\top} d \right| \ge \alpha \left| \min_{\substack{d \in C - x \\ \|d\| \le 1}} \nabla f(x)^{\top} d \right|$$

α -well-aligned matrices (convex-constrained version)

Let $x + D\mathbb{R}^p$ be the affine subspace and D = QR be the QR factorization

Definition. [Chen, Hare, Wiebe, 2025] Let $\alpha \in (0,1)$. We say that $D \in \mathbb{R}^{n \times p}$ is α -well-aligned for f and C at x if

$$\left| \min_{\substack{d \in C - x \\ \|d\| \le 1}} \nabla f(x)^{\top} Q Q^{\top} d \right| \ge \alpha \underbrace{\left| \min_{\substack{d \in C - x \\ \|d\| \le 1}} \nabla f(x)^{\top} d \right|}_{\pi^{f}(x)}$$

Theorem. [Chen, Hare, Wiebe, 2025] (Idea: Concentration on the Grassmannian) Suppose $p \geq n\alpha$ and let $D_{ij} \sim \mathcal{N}(0,1)$. Then,

 $\mathbb{P}\left[D \text{ is } \alpha\text{-well-aligned for } f \text{ and } C \text{ at } x\right]$

 \geq complicated stuff that depends on n, p, α , $\pi^f(x)$, and $\|\nabla f(x)\|$

Convergence and complexity results

Let $\epsilon > 0$, (UC)=UnConstrained, and (CC)=Convex-Constrained

• (UC)
$$\mathbb{P}\left[\inf_{k\geq 0}\|\nabla f(x_k)\|=0\right]=1$$

(CC) $\mathbb{P}\left[\inf_{k\geq 0}\pi^f(x_k)=0\right]=1$

• (UC)
$$\mathbb{E}\left[\min\left\{k \geq 0 : \|\nabla f(x_k)\| < \epsilon\right\}\right] = \mathcal{O}(\epsilon^{-2})$$

(CC) $\mathbb{E}\left[\min\left\{k \geq 0 : \pi^f(x_k) < \epsilon\right\}\right] = \mathcal{O}(\epsilon^{-4})$

Summary

In summary,

- High-dimensional DFO problems are hard
- Unconstrained problems can be effectively approached by randomized subspace methods
- Randomized subspace methods work for convex constrained problems, but the projection onto the feasible set is required

Future directions:

- Nonconvex constraints?
- Blackbox constraints?
- Random manifolds?

Thank you

- Y. Chen, W. Hare, and A. Wiebe. "Q-fully quadratic modeling and its application in a random subspace derivative-free method". In: Computational Optimization and Applications 89.2 (2024), pp. 317–360
- Y. Chen, W. Hare, and A. Wiebe. "CLARSTA: A random subspace trust-region algorithm for convex-constrained derivative-free optimization". In: arXiv preprint arXiv:2506.20335 (2025)

Email: yiwchen@student.ubc.ca