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Derivative-free optimization (DFO)

Consider the optimization problem
min f(x)

x€eR"

where f is given by a blackbox:

-

Derivative-free optimization is the mathematical study of optimization
algorithms that do not use derivatives

Note: It does not mean that the derivatives do not exist
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Model-based DFO

Model-based DFO methods:
@ Use function values to build an approximation model of the objective

@ Use the model to guide future iterations

Limitations:
@ Number of function evals. is too high for large problems (n =~ 1000)

@ Primarily designed for small- to medium-scale problems (n < 100)
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Randomized subspace model-based DFO

Idea:
1. Select a low-dimensional affine subspace
2. Build and optimize a model to compute a step in this subspace

3. Change the affine subspace at the next iteration
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Model-based trust-region (MBTR) algorithm

for k=0,1,... do
Construct a model my in R™:

1
mi(s) = f(xk) + gx s+ ESTHkS
Approximately solve the trust-region subproblem in R":

sk ~ argmin my(s), s.t. ||s|| < Ay
sER"

Evaluate f(xx + sk) and apply descent ratio test

f(xk) — f(xk +5sk)  true decrease

Pk = mi(0) — my(sk) ~ predicted decrease

Accept/reject step based on px and update trust region radius
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Model quality requirement: Q-fully linear models

Definition. A model m : R" — R is fully linear in B(x, A) if there exist
kf(x), kg(x) > 0 s.t. for all s € R" with [|s]| < A,

|F(x +5) = m(x +5)| < Kr(x)A°
IVFf(x+5s) — Vm(x +s)|| < kg(x)A
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Model quality requirement: Q-fully linear models

Definition. A model m : R" — R is fully linear in B(x, A) if there exist
kf(x), kg(x) > 0 s.t. for all s € R" with [|s]| < A,
1f(x +5) — m(x + )| < re(x)A2
[VF(x+5) — Vm(x +s)|| < rg(x)A

Definition. [Cartis, Roberts, 2023|
Let @ € R™P. A model m: RP — R is Q-fully linear in B(x,A) if there
exist kf(x), kg(x) > 0 s.t. for all &€ RP with ||5]] < A,
Fx + Q8) — ()| < rr(x)A
HQTVf(x 4 Qs - va(g)H < rg(x)A

Note: Check out [Chen, Hare, Wiebe, 2024] for construction &
management procedures!
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Subspace quality requirement: a-well-aligned matrices

Let x + DIRP be the affine subspace

Definition. [Cartis, Roberts, 2023]
Let o € (0,1). We say that D € R"*P is a-well-aligned for f at x if

HDTW(X)H > a|| VX))
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Subspace quality requirement: a-well-aligned matrices

Let x + DIRP be the affine subspace

Definition. [Cartis, Roberts, 2023]
Let o € (0,1). We say that D € R"*P is a-well-aligned for f at x if

|p79(x)| = alvFEl
Theorem. [Dzahini, Wild, 2024] (Idea: Johnson-Lindenstrauss Lemma)
Let o, 8 € (0,1). Suppose p > 4(1 — a)~2In(1/6) and let D ~ N(0,1/p)

Then,
P[D is a-well-aligned for f at x] >1—4
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A quick comparison

[CartisRoberts23] | [DzahiniWild24] | [ChenHareWiebe24]

Problem Deterministic Stochastic Deterministic
Model Linear Linear Quadratic
Completel Completel Reuse previous
Sample set pletely pietely p
resample resample points

No discussion on | Lower bound on Lower bound on

Subspace
P P Prand
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Looks good, but...

Haha, my problem has constraints!
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(C, Q)-fully linear models

Let C be the constraint set (convex, closed, nonempty interior)

Definition. [Chen, Hare, Wiebe, 2025]
Let @ € R™P. A model m: RP — R is (C, Q)-fully linear in B(x, A) if
there exist #r(x), kg(x) > 0s.t. forall € Q' (C — x) with [[5]| < A,

[F(x + Q) — m(S)| < rr(x)A%

;
max Q'VF(x+ Q3) —Vm(3)) d| < k.(x)A

o (QTVf(x+@s) - vin(3)) £(x)
lldll<1

QRP
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a-well-aligned matrices (convex-constrained version)

Let x + DIRP be the affine subspace and D = QR be the QR factorization

Definition. [Chen, Hare, Wiebe, 2025]
Let o € (0,1). We say that D € R"*P is a-well-aligned for f and C at x if

min Vf(x)"QQ'd
deC—x
ldlj<1

>a| min VF(x)'d
deC—x

ldl<1
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a-well-aligned matrices (convex-constrained version)

Let x + DIRP be the affine subspace and D = QR be the QR factorization

Definition. [Chen, Hare, Wiebe, 2025]
Let o € (0,1). We say that D € R"*P is a-well-aligned for f and C at x if

min Vf(x)"QQ"d| > a| min Vf(x)'d
deC—x deC—x
ldll<1 ldll<1

J/

w;(rx)

Theorem. [Chen, Hare, Wiebe, 2025]
(Idea: Concentration on the Grassmannian)
Suppose p > na and let Djj ~ N(0,1). Then,

P[D is a-well-aligned for f and C at x|
> complicated stuff that depends on n, p, a, 7' (x), and || VF(x)]|
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Convergence and complexity results

Let € > 0, (UC)=UnConstrained, and (CC)=Convex-Constrained

o (UC) P Lig%HVf(xk)H - 0} =1

(COP [li(gfoﬁf(xk) = 0} =1

e (UC)E[min{k>0:|VFf(x)| <e}] = O(e?)
(COE[min{k>0:7"(x)<e}] =0( ")

(UC) from [Cartis, Roberts, 2023]; (CC) from [Chen, Hare, Wiebe, 2025]
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In summary,
@ High-dimensional DFO problems are hard
@ Unconstrained problems can be effectively approached by randomized
subspace methods
@ Randomized subspace methods work for convex constrained problems,
but the projection onto the feasible set is required

Future directions:
@ Nonconvex constraints?
@ Blackbox constraints?

@ Random manifolds?
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Thank you
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