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Inscribability of a polytope

Given a polytope, does there exist a combinatorially equivalent∗ polytope
with all vertices on the sphere?

Yes! ⇒ Inscribable No! ⇒ Non-inscribable

∗The face lattices of the two polytopes are isomorphic
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The problem

For 3-polytopes:

[Steiner, 1832]: Are all 3-polytopes inscribable?

[Steinitz, 1928]: No :(

[Rivin, 1996]: A complete characterization of inscribable 3-polytopes

For d-polytopes where d > 3:

[Padrol, Ziegler, 2016]: Strong necessary and sufficient conditions?

[Firsching, 2017]: Solving a nonlinear system with nd variables,Å
n

d + 1

ã
inequalities of degree d + 1, and n equalities of degree 2,

where n = number of vertices
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Slack matrix

Suppose P is a d-polytope such that

P = conv{v1, . . . , vn}
P = {x ∈ Rd : cj − h⊤j x ≥ 0, j = 1, . . . ,m}

A slack matrix SP ∈ Rn×m of P is given by

SP =


...

· · · cj − h⊤j vi · · ·
...


Note: rank(SP) = d + 1 [Gouveia et al., 2013] and

(SP)ij

®
= 0, if vi is on facet j

> 0, if vi is not on facet j

Fact: We can WLOG suppose that all cj = 1
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An observation on inscribable polytopes

Suppose P is inscribed in a sphere
Denote V = [v1 · · · vn], H = [h1 · · · hm], and

W =

 1 0⊤d
1n V⊤

1m −H⊤

 ∈ R(n+m+1)×(d+1)

Then

X = WW⊤

=

 1 1⊤n 1⊤m
1n A S
1m S⊤ B

 =

 1 1⊤n 1⊤m
1n 1n×n + V⊤V 1n×m − V⊤H
1m 1m×n − H⊤V 1m×m + H⊤H

 ≽ 0

satisfies diag(A) = const., S ≥ 0, S has the same support as slack
matrices of P, and rank(X ) = d + 1

7 / 26



An observation on inscribable polytopes

Suppose P is inscribed in a sphere
Denote V = [v1 · · · vn], H = [h1 · · · hm], and

W =

 1 0⊤d
1n V⊤

1m −H⊤

 ∈ R(n+m+1)×(d+1)

Then

X = WW⊤

=

 1 1⊤n 1⊤m
1n A S
1m S⊤ B

 =

 1 1⊤n 1⊤m
1n 1n×n + V⊤V 1n×m − V⊤H
1m 1m×n − H⊤V 1m×m + H⊤H

 ≽ 0

satisfies diag(A) = const., S ≥ 0, S has the same support as slack
matrices of P, and rank(X ) = d + 1

7 / 26



Characterizing inscribability using slack matrices

Theorem. A d-polytope P is inscribable if and only if there exists

X =

 1 1⊤n 1⊤m
1n A S
1m S⊤ B

 ≽ 0

such that

diag(A) = const.

S ≥ 0

S has the same support as slack matrices of P

rank(X ) = d + 1
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Determining inscribability via a min-rank problem

Let I z = {(i , j) : (SP)ij = 0}
Inscribability can be determined by the following min-rank problem:

min
X

rank(X )

s.t. X =

 1 1⊤n 1⊤m
1n A S
1m S⊤ B

 ≽ 0

Sij = 0, if (i , j) ∈ I z

Sij > 0, if (i , j) /∈ I z

Aii = 2, i = 1, . . . , n

Note: The minimum of this problem is no less than d + 1
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An SDP formulation

Instead of solving the min-rank problem directly, we consider the following
SDP problem:

min
X

fp = tr(X )−
∑

(i ,j)/∈I z
λijSij

s.t. X =

 1 1⊤n 1⊤m
1n A S
1m S⊤ B

 ≽ 0

Sij = 0, if (i , j) ∈ I z

Aii = 2, i = 1, . . . , n

(P)

where λij are some positive weights
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Dual problem

The dual problem of (P) is

max
u,w

fd = m + n +
∑

1≤i≤n
1≤j≤m

Mij −
n∑

i=1

ui + 1

s.t.

ï
In + diag(u) 1

2M
1
2M

⊤ Im

ò
≽ 0

(D)

where

Mij =

®
−λij , if (i , j) /∈ I z

wk that corresponds to Sij , if (i , j) ∈ I z
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When the SDP is accurate?

For an inscription (A∗,B∗, S∗), we want to find dual variables (u∗,w∗) s.t.
ñ
In + diag(u∗) 1

2M
1
2M

⊤ Im

ô
≽ 0

f ∗p = f ∗d

If we assume that the inscription is facet transitive†, centered at the origin,
every facet has k vertices, and all

u∗i = u, w∗
i = w , λij = λ

then the two conditions are simplified to®
λmax(MM⊤) ≤ 4 + 4u

n(1 + u) +m∥h1∥2 = (λ+ w)km

†There are rigid linear transformations that send the polytope to itself and send any
of its facets to any other of its facets
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Examples where the SDP is accurate
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Example: n-gons

For n-gons, we have n = m ≥ 3, d = 2, and k = 2
Consider the inscription:

vi =

ï
cos

2(i − 1)π

n
sin

2(i − 1)π

n

ò⊤
hj =

1

cos π
n

ï
cos

(2j − 1)π

n
sin

(2j − 1)π

n

ò⊤
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Example: n-gons

Goal: Find λ, u, and w such that®
λmax(MM⊤) ≤ 4 + 4u

n(1 + u) +m∥h1∥2 = (λ+ w)km

Notice that

MM⊤ =


a b c · · · b
b a b · · · c
c b a · · · c
...

...
...

. . .
...

b c c · · · a


where a = (n − 2)λ

2
+ 2w2, b = (n − 3)λ

2
+ w2 − 2λw ,

c = (n − 4)λ
2 − 4λw
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Example: n-gons

Set

λ =
2

n
sec2

π

n
, u = tan2

π

n
, w =

n − 2

n
sec2

π

n

Then ®
λmax(MM⊤) = 4 sec2 π

n = 4 + 4u

n(1 + u) +m∥h1∥2 = 2n sec2 π
n = (λ+ w)km

Theorem. For all n ≥ 3 and λij = λ = 2
n sec

2 π
n , (i , j) /∈ I z , the SDP has

an optimal solution of rank 3 that certifies inscribability of the n-gon
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More examples

For d-simplices, d-cubes, and d-crosspolytopes, the SDP also solves the
inscribability problem

In particular, solving (P) with the following weights gives an inscription:

(d-simplex) λij = λ =
2d2

d + 1
, (i , j) /∈ I z

(d-cube) λij = λ = d21−d , (i , j) /∈ I z

(d-crosspolytope) λij = λ = 1, (i , j) /∈ I z
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Alternating projection

Recall:

min
X

rank(X ) s.t. X =

 1 1⊤n 1⊤m
1n A S
1m S⊤ B

 ≽ 0

Sij = 0, if (i , j) ∈ I z

Sij > 0, if (i , j) /∈ I z

Aii = 2, i = 1, . . . , n

Alternating projection (AP):
Project Xk between rank d + 1 cone and feasible set Ω

Simplified alternating projection (SAP):
Replace the projection onto Ω with forcing Xk to have correct
constants on correct positions
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Test settings

Algorithms:

Solving the SDP formulation

AP (use SDP solution as starting point)

SAP (use SDP solution as starting point)

Test set: 100 random inscribable simplicial d-polytopes with n vertices
where 8 ≤ n ≤ 10 and 5 ≤ d ≤ 8
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Tuning λij for SDP

λc : From examples where the SDP is accurate λij = λc = 2d
n

λh: Heuristic

Set λij = λinit
ij for i = 1, . . . , n and j = 1, . . . ,m

while max{λij : i = 1, . . . , n, j = 1, . . . ,m} ≤ λmax do

Solve SDP with current λij

if SDP solution gives an inscription then
Return

else

Set λij = λincλij for each wrong facet
end

end

λ∗: Minimizing the duality gap for the known inscription
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Results
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Summary

In this research, we

Characterized the inscribability problem as a min-rank problem

Proposed an SDP approximation for the min-rank problem and proved
it is accurate for certain classes of polytopes

Provided and compared three algorithms, demonstrating our SDP
approximation’s accuracy, efficiency, and potential in high dimensions

Future work:

Better heuristics for tuning λij

Effective and efficient methods for the min-rank problem

Non-inscribability certificates
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Thank you
Yiwen Chen, João Gouveia, Warren Hare, and Amy Wiebe.
Determining inscribability of polytopes via rank minimization based on
slack matrices. 2025. url: https://arxiv.org/abs/2502.01878.
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