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@ Introduction
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Derivative-free optimization (DFO)

Consider the optimization problem
min f(x
xeC ( )

where f is given by a blackbox:

-

Derivative-free optimization is the mathematical study of optimization
algorithms that do not use derivatives

Note: It does not mean that the derivatives do not exist
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Model-based DFO

Model-based DFO methods:
@ Use function values to build an approximation model of the objective

@ Use the model to guide future iterations

Limitations:
@ Function evaluations are too expensive for large problems (n a 1000)

@ Primarily designed for small- to medium-scale problems (n < 100)
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Random subspace model-based DFO (unconstrained)

Idea:
1. Select a low-dimensional affine subspace
2. Build and minimize a model to compute a step in this subspace
3. Change the affine subspace at the next iteration

Some existing papers:

[Zhang, 2012]; [Cartis, Roberts, 2023]; [Dzahini, Wild, 2024];
[Chen, Hare, Wiebe, 2024]; [Cartis, Roberts, 2024]
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© Model-based trust-region algorithms
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Model-based trust-region (MBTR) algorithm

for k=0,1,... do
Construct a model my in R™:

1
mi(s) = f(xk) + g/ s+ ESTHks
Approximately solve the trust-region subproblem in R":

s ~ argmin my(s), s.t. ||s|| < Ay
sER"

Evaluate f(xx + sk) and calculate ratio

f(xk) — f(xk +sk)  true decrease

Pk = mi(0) — my(sk) ~ predicted decrease

Accept/reject step based on px and update trust region radius
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Fully linear models

Definition. A model m : R" — R is fully linear in B(x, A) C R" if there

exist constants Ker(x) > 0 and keg(x) > 0 such that for all s € R” with
Isll < A,

Fx -+ 5) = mlx +5)] < ar ()22
[VF(x+5) = Vm(x + 5)|| < reg(Xx)A
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Constructing fully linear models

Theorem. (Taylor's theorem) Let f € C1* in B(x,A) with constant Ly
Then for any s € R” with [|s]| < A

1
f(x+s) - f(x)— VF(x)s| < 5Lw||su2
[VE(x +5s) = V()| < Lorlls||
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Constructing fully linear models

Theorem. (Taylor's theorem) Let f € C1* in B(x,A) with constant Ly
Then for any s € R” with [|s]| < A
1
f(x+5) = F(x) = VF()'s| < SLorlsll®
IVF(x +s) = V()| < Lyr|ls]]

Construct a fully linear model m(x 4 s) = f(x) + g 's where g ~ Vf(x)
@ linear interpolation

@ linear regression
° ...
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© Convex-constrained Linear Approximation Random Subspace
Trust-region Algorithm (CLARSTA)
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Convex-constrained random subspace MBTR algorithm

for k=0,1,... do
Define an affine subspace xx + DxRP by selecting D) € R"*P
Construct a model mj in RP

Approximately solve the trust-region subproblem in RP:

Sk ~ argmin my(s), s.t. ||5]] < Ag
seQ/ C

and calculate the corresponding feasible step s, € R”
Evaluate f(xx + sk) and calculate ratio

f(xk) — f(xk + sk) true decrease

Pl = my(0) — my(sk) " predicted decrease

Accept/reject step based on px and update trust region radius
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Model construction
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(C, Q)-fully linear models

Definition. Let @ € R"*P consist of p orthonormal columns

A model m: RP — R is (C, Q)-fully linear in B(x, A) C R" if there exist
constants kef(x) > 0 and keg(x) > 0 such that for all s € Q' (C — x) with
5]l < A,

F(x + Q8) — M(S)] < rer(x)A2

. s\ T
deﬁn:lll?_‘(_x) (QTVf(X + QS) — Vm(s)) d' < ’i"eg(x)A
d||<1

QRP
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A generalization of fully linear models

Note: If C =R" and Q = I,, then for all ||5]] < A

|F(x +3) — M(E)| < ker(x)A2
IVF(x +3) = VIn(S)|| < reg(x)A

which aligns with the definition of fully linear models

Actually, this is also a generalization of Q-fully linear models and C-pointwise fully

linear models (see details in manuscript)
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Constructing (C, Q)-fully linear models

Let f € C1F
Let x + DIRP be the affine subspace and D = QR be the QR factorization

Denote R = [r; - - - rp] and diam(R) = maxi<j<p || il

Theorem. Let f(/s\) = f(x+ @5) and m : R? — R be the determined
linear interpolation model of f on {0} U {rj:i=1,...,p}
Then, mis (C, Q)-fully linear in B(x, diam(R))
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Subspace selection
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First-order criticality measure

First-order criticality measure for convex-constrained optimization
[Conn, Gould, Toint, 2000]

17/30



First-order criticality measure

First-order criticality measure for convex-constrained optimization

f _ . Tyl o .m _ : T
' (x) = XPJQCVf(X) d| ~7M(x) = XTJQCVm(X) d
lldll<1 ldll<1
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a-well-aligned matrices

Let f € C! and a € (0,1)
Let x + DIRP be the affine subspace and D = QR be the QR factorization

Unconstrained version: [Cartis, Roberts, 2023|
Definition. We say that D € R"*P is a-well-aligned for f at x if

|pTVF)|| = avF G
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a-well-aligned matrices

Let f € C! and a € (0,1)
Let x + DIRP be the affine subspace and D = QR be the QR factorization

Unconstrained version: [Cartis, Roberts, 2023|
Definition. We say that D € R"*P is a-well-aligned for f at x if

|pTVF)|| = avF G

Convex-constrained version:
Definition. We say that D € R"*P is a-well-aligned for f and C at x if

min VF(x)"QQ"d| > arf(x)
deC—x
ldll<1
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Constructing a-well-aligned matrices

Let f €Cl,x € R”, and a € (0,1)
Theorem. Suppose p > na. Let Djj ~ N(0,1). Then,

P[D is a-well-aligned for f and C at x|

L if 7f(x) =0,
= 1 e N2 ( 7)) e f
1—exp| -2 (2 —-a) <W) , ifw'(x)#0

[ary
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Convergence
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f € C* and has compact feasible level set C N leve(xy)
|V2m|l < Ky for all k
Tkt € (0,1) s.t. the solution S of the trust-region subproblem satisfy

. T (xk) 1>

mi(0,) — Mi(5k) > ki ™(X min<A,A,
k(0p) — mi(Sic) > K™ (xi) T

e Jk > 0 s.t. the trust-region radius are not increased for all k > k
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Convergence results

Theorem. For all € > 0, there exist C > 0 and a sufficiently large K s.t.
P {min 7wl (x) < e] >1— e C(K-k+1)e
k<K
Theorem. If CLARSTA is run with Apin = 0, then
P |inf ' (x) = } =1
-0

Theorem. E [min {k : 77 (xc) < €}] = O(e™)

The P[-] and E[-] give the probability and expected value of a random variable
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@ Numerical experiments
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Test settings

Solvers:
o CLARSTA
e COBYLA
Test functions:

n—1
e ChainRosenbrock: f(x) = > (100(x;+1 — x?)? + (1 — x;)?)
i=1

n n
e Trigonometric: f(x) = Y_(n— Y cosx;j + i(1 — cos x;) — sin x;)?
i=1 j=1

Constraints:
@ box with x* at the corner
@ ball with x* on the boundary

@ half-space with x* in the interior

24/30



Comparison of runtime to reach f*

Steps:
1. Run CLARSTA for 100(n + 1) fevals and denote the result by 7*

2. Run COBYLA until f* is reached or 100(n + 1) fevals or 10° seconds
are required

Results when n = 1000:

Problem CLARSTA COBYLA
obj. const. nf Total time (s) nf Total time (s)
C.R. box 100100  6.451e+01 26716 6.196e+04
C.R. ball 100100  6.913e+01 26337 2.048e+04

C.R. halfspace | 100100 7.349e+01 27054 2.113e+04
Trig. box 100100  6.975e+03 N/A 1.000e+05*
Trig. ball 100100  7.052e+03 100100*  8.678e+04
Trig. halfspace | 100100  6.901e+03 100100*  8.655e+04

*COBYLA does not reach f*
25/30



Comparison of runtime to reach f*

Results when n = 10000:

Problem CLARSTA COBYLA
obj. const. nf Total time (s) | nf  Total time (s)
CR. box 1000100 1.836e+03 N/A  1.000e+05*
CR. ball 1000100 1.960e+03 N/A  1.000e+05*
C.R. halfspace | 1000100 1.928e+03 N/A  1.000e+05*

*COBYLA does not reach f*
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Relative performance vs. per-feval time

Suppose that
TotalTime,); = AlgTimealg + nfagtteval

Then, we can compute the maximum per-feval time for CLARSTA to be
faster than COBYLA

Results (in seconds):

obj. const. n =100 n = 300 n =900 n = 1000
C.R. box 9.605e-04 3.447e-02 1.921e+00 8.435e-01
C.R. ball 0 8.727e-03  6.324e-01  2.769e-01

C.R. halfspace 0 7.775e-03  6.182e-01  2.884e-01
Trig. box 0 1.339e-01 1.375e+03 +Inf
Trig. ball 0 5.226e-02 +Inf +Inf
Trig. halfspace 0 3.057e-02 +Inf +Inf
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© Summary
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For high-dimensional convex-constrained DFO problems, we:

@ Defined a class of (C, Q)-fully linear models that is easy to analyze
and construct

@ Provided a new subspace sampling technique that preserves first-order
criticality measure by a certain percentage

@ Proposed an algorithm with convergence analysis and reliable
performance in high dimensions

Future directions:
@ Reduce worst-case complexity
e “(C, Q)-fully quadratic”
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Thank you

@ Yiwen Chen, Warren Hare, Amy Wiebe. CLARSTA: A random subspace
trust-region algorithm for convex-constrained derivative-free optimization.
(Preprint available soon.)

Email: yiwchen@student.ubc.ca

30/30


yiwchen@student.ubc.ca

	Introduction
	Model-based trust-region algorithms
	Convex-constrained Linear Approximation Random Subspace Trust-region Algorithm (CLARSTA)
	Model construction
	Subspace selection
	Convergence

	Numerical experiments
	Summary

