
Random subspace trust-region algorithm for
high-dimensional convex-constrained derivative-free

optimization

Yiwen Chen

Department of Mathematics
University of British Columbia

June, 2025

Joint work with Dr. Warren Hare and Dr. Amy Wiebe

1 / 30



Outline

1 Introduction

2 Model-based trust-region algorithms

3 Convex-constrained Linear Approximation Random Subspace
Trust-region Algorithm (CLARSTA)

4 Numerical experiments

5 Summary

2 / 30



Derivative-free optimization (DFO)

Consider the optimization problem

min
x∈C

f (x)

where f is given by a blackbox:

x f(x)

Derivative-free optimization is the mathematical study of optimization
algorithms that do not use derivatives

Note: It does not mean that the derivatives do not exist

3 / 30



Model-based DFO

Model-based DFO methods:

Use function values to build an approximation model of the objective

Use the model to guide future iterations

Limitations:

Function evaluations are too expensive for large problems (n ≈ 1000)

Primarily designed for small- to medium-scale problems (n ≤ 100)
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Random subspace model-based DFO (unconstrained)

Idea:

1. Select a low-dimensional affine subspace

2. Build and minimize a model to compute a step in this subspace

3. Change the affine subspace at the next iteration

Some existing papers:
[Zhang, 2012]; [Cartis, Roberts, 2023]; [Dzahini, Wild, 2024];
[Chen, Hare, Wiebe, 2024]; [Cartis, Roberts, 2024]
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Model-based trust-region (MBTR) algorithm

for k = 0, 1, ... do
Construct a model mk in Rn:

mk(s) = f (xk) + g⊤
k s +

1

2
s⊤Hks

Approximately solve the trust-region subproblem in Rn:

sk ≈ argmin
s∈Rn

mk(s), s.t. ∥s∥ ≤ ∆k

Evaluate f (xk + sk) and calculate ratio

ρk =
f (xk)− f (xk + sk)

mk(0)−mk(sk)
=

true decrease

predicted decrease

Accept/reject step based on ρk and update trust region radius
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Fully linear models

Definition. A model m : Rn → R is fully linear in B(x ,∆) ⊆ Rn if there
exist constants κef (x) > 0 and κeg (x) > 0 such that for all s ∈ Rn with
∥s∥ ≤ ∆,

|f (x + s)−m(x + s)| ≤ κef (x)∆
2

∥∇f (x + s)−∇m(x + s)∥ ≤ κeg (x)∆
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Constructing fully linear models

Theorem. (Taylor’s theorem) Let f ∈ C1+ in B(x ,∆) with constant L∇f

Then for any s ∈ Rn with ∥s∥ ≤ ∆∣∣∣f (x + s)− f (x)−∇f (x)⊤s
∣∣∣ ≤ 1

2
L∇f ∥s∥2

∥∇f (x + s)−∇f (x)∥ ≤ L∇f ∥s∥

Construct a fully linear model m(x + s) = f (x) + g⊤s where g ≈ ∇f (x)

linear interpolation

linear regression

...
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Convex-constrained random subspace MBTR algorithm

for k = 0, 1, ... do
Define an affine subspace xk + DkRp by selecting Dk ∈ Rn×p

Construct a model “mk in Rp

Approximately solve the trust-region subproblem in Rp:

ŝk ≈ argmin
ŝ∈Q⊤

k C

“mk(ŝ), s.t. ∥ŝ∥ ≤ ∆k

and calculate the corresponding feasible step sk ∈ Rn

Evaluate f (xk + sk) and calculate ratio

ρk =
f (xk)− f (xk + sk)“mk(0)− “mk(ŝk)

=
true decrease

predicted decrease

Accept/reject step based on ρk and update trust region radius
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Model construction
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(C ,Q)-fully linear models

Definition. Let Q ∈ Rn×p consist of p orthonormal columns
A model “m : Rp → R is (C ,Q)-fully linear in B(x ,∆) ⊆ Rn if there exist
constants κef (x) > 0 and κeg (x) > 0 such that for all ŝ ∈ Q⊤(C − x) with
∥ŝ∥ ≤ ∆,

|f (x + Qŝ)− “m(ŝ)| ≤ κef (x)∆
2

max
d∈Q⊤(C−x)

∥d∥≤1

∣∣∣∣ÄQ⊤∇f (x + Qŝ)−∇“m(ŝ)
ä⊤

d

∣∣∣∣ ≤ κeg (x)∆

O

C − x
QRp
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A generalization of fully linear models

Note: If C = Rn and Q = In, then for all ∥ŝ∥ ≤ ∆

|f (x + ŝ)− “m(ŝ)| ≤ κef (x)∆
2

∥∇f (x + ŝ)−∇“m(ŝ)∥ ≤ κeg (x)∆

which aligns with the definition of fully linear models

Actually, this is also a generalization of Q-fully linear models and C -pointwise fully
linear models (see details in manuscript)
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Constructing (C ,Q)-fully linear models

Let f ∈ C1+

Let x + DRp be the affine subspace and D = QR be the QR factorization
Denote R = [r1 · · · rp] and diam(R) = max1≤i≤p ∥ri∥

Theorem. Let f̂ (ŝ) = f (x + Qŝ) and “m : Rp → R be the determined
linear interpolation model of f̂ on {0p} ∪ {ri : i = 1, . . . , p}
Then, “m is (C ,Q)-fully linear in B(x , diam(R))
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Subspace selection
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First-order criticality measure

First-order criticality measure for convex-constrained optimization
[Conn, Gould, Toint, 2000]

πf (x) =

∣∣∣∣∣∣ min
x+d∈C
∥d∥≤1

∇f (x)⊤d

∣∣∣∣∣∣

C

x

∇f (x)

d∗

d∗ = 0

C

x

∇f (x)
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α-well-aligned matrices

Let f ∈ C1 and α ∈ (0, 1)
Let x + DRp be the affine subspace and D = QR be the QR factorization

Unconstrained version: [Cartis, Roberts, 2023]
Definition. We say that D ∈ Rn×p is α-well-aligned for f at x if∥∥∥D⊤∇f (x)

∥∥∥ ≥ α ∥∇f (x)∥

Convex-constrained version:
Definition. We say that D ∈ Rn×p is α-well-aligned for f and C at x if∣∣∣∣∣∣ min

d∈C−x
∥d∥≤1

∇f (x)⊤QQ⊤d

∣∣∣∣∣∣ ≥ απf (x)

18 / 30



α-well-aligned matrices

Let f ∈ C1 and α ∈ (0, 1)
Let x + DRp be the affine subspace and D = QR be the QR factorization

Unconstrained version: [Cartis, Roberts, 2023]
Definition. We say that D ∈ Rn×p is α-well-aligned for f at x if∥∥∥D⊤∇f (x)

∥∥∥ ≥ α ∥∇f (x)∥

Convex-constrained version:
Definition. We say that D ∈ Rn×p is α-well-aligned for f and C at x if∣∣∣∣∣∣ min

d∈C−x
∥d∥≤1

∇f (x)⊤QQ⊤d

∣∣∣∣∣∣ ≥ απf (x)

18 / 30



Constructing α-well-aligned matrices

Let f ∈ C1, x ∈ Rn, and α ∈ (0, 1)

Theorem. Suppose p ≥ nα. Let Dij ∼ N (0, 1). Then,

P [D is α-well-aligned for f and C at x]

≥

1, if πf (x) = 0,

1− exp

Å
−n−1

8

(p
n − α

)2 ( πf (x)
∥∇f (x)∥

)2
ã
, if πf (x) ̸= 0
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Convergence
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Assumptions

f ∈ C1+ and has compact feasible level set C ∩ levf (x0)

∥∇2“mk∥ ≤ κH for all k

∃κtr ∈ (0, 1) s.t. the solution ŝk of the trust-region subproblem satisfy“mk(0p)− “mk(ŝk) ≥ κtrπ
m(xk)min

Å
πm(xk)

∥∇2“mk∥+ 1
,∆k , 1

ã
∃k ≥ 0 s.t. the trust-region radius are not increased for all k ≥ k
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Convergence results

Theorem. For all ϵ > 0, there exist C > 0 and a sufficiently large K s.t.

P
ï
min
k≤K

πf (xk) < ϵ

ò
≥ 1− e−C(K−k+1)ϵ2

Theorem. If CLARSTA is run with ∆min = 0, then

P
ï
inf
k≥0

πf (xk) = 0

ò
= 1

Theorem. E
[
min

{
k : πf (xk) < ϵ

}]
= O(ϵ−4)

The P[·] and E[·] give the probability and expected value of a random variable
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Test settings

Solvers:

CLARSTA

COBYLA

Test functions:

ChainRosenbrock: f (x) =
n−1∑
i=1

(100(xi+1 − x2i )
2 + (1− xi )

2)

Trigonometric: f (x) =
n∑

i=1
(n −

n∑
j=1

cos xj + i(1− cos xi )− sin xi )
2

Constraints:

box with x∗ at the corner

ball with x∗ on the boundary

half-space with x∗ in the interior
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Comparison of runtime to reach f ∗

Steps:

1. Run CLARSTA for 100(n + 1) fevals and denote the result by f ∗

2. Run COBYLA until f ∗ is reached or 100(n+ 1) fevals or 105 seconds
are required

Results when n = 1000:

Problem CLARSTA COBYLA
obj. const. nf Total time (s) nf Total time (s)

C.R. box 100100 6.451e+01 26716 6.196e+04
C.R. ball 100100 6.913e+01 26337 2.048e+04
C.R. halfspace 100100 7.349e+01 27054 2.113e+04
Trig. box 100100 6.975e+03 N/A 1.000e+05*
Trig. ball 100100 7.052e+03 100100* 8.678e+04
Trig. halfspace 100100 6.901e+03 100100* 8.655e+04

*COBYLA does not reach f ∗
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Comparison of runtime to reach f ∗

Results when n = 10000:

Problem CLARSTA COBYLA
obj. const. nf Total time (s) nf Total time (s)

C.R. box 1000100 1.836e+03 N/A 1.000e+05*
C.R. ball 1000100 1.960e+03 N/A 1.000e+05*
C.R. halfspace 1000100 1.928e+03 N/A 1.000e+05*

*COBYLA does not reach f ∗
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Relative performance vs. per-feval time

Suppose that

TotalTimealg = AlgTimealg + nfalgtfeval

Then, we can compute the maximum per-feval time for CLARSTA to be
faster than COBYLA

Results (in seconds):

obj. const. n = 100 n = 300 n = 900 n = 1000

C.R. box 9.605e-04 3.447e-02 1.921e+00 8.435e-01
C.R. ball 0 8.727e-03 6.324e-01 2.769e-01
C.R. halfspace 0 7.775e-03 6.182e-01 2.884e-01
Trig. box 0 1.339e-01 1.375e+03 +Inf
Trig. ball 0 5.226e-02 +Inf +Inf
Trig. halfspace 0 3.057e-02 +Inf +Inf

27 / 30



Outline

1 Introduction

2 Model-based trust-region algorithms

3 Convex-constrained Linear Approximation Random Subspace
Trust-region Algorithm (CLARSTA)

4 Numerical experiments

5 Summary

28 / 30



Summary

For high-dimensional convex-constrained DFO problems, we:

Defined a class of (C ,Q)-fully linear models that is easy to analyze
and construct

Provided a new subspace sampling technique that preserves first-order
criticality measure by a certain percentage

Proposed an algorithm with convergence analysis and reliable
performance in high dimensions

Future directions:

Reduce worst-case complexity

“(C ,Q)-fully quadratic”
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Thank you
Yiwen Chen, Warren Hare, Amy Wiebe. CLARSTA: A random subspace
trust-region algorithm for convex-constrained derivative-free optimization.
(Preprint available soon.)
Email: yiwchen@student.ubc.ca
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