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© Introduction
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Derivative-free optimization (DFO)

Consider the optimization problem
min f(x)

x€eR"

where f is given by a blackbox:

-

Derivative-free optimization is the mathematical study of optimization
algorithms that do not use derivatives

Note: It does not mean that the derivatives do not exist
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Model-based DFO

Model-based DFO methods:
@ Use function values to build an approximation model of the objective

@ Use the model to guide future iterations

Limitations:
@ Function evaluations are too expensive for large problems

@ They are primarily designed for small- to medium-scale problems
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Improving scalability by subspace decomposition

Idea:
1. Select a low-dimensional affine subspace
2. Build and minimize a model to compute a step in this subspace
3. Change the affine subspace at the next iteration

Some existing papers:

[Zhang, 2012]; [Dzahini, Wild, 2022]; [Menickelly, 2023];
[Cartis, Roberts, 2023]
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© Quadratic approximation random subspace trust-region algorithm
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Model-based trust-region (MBTR) algorithm

for k=0,1,... do
Construct a model my in R™:

1
mi(s) = f(xk) + g/ s+ ESTHks
Approximately solve the trust-region subproblem in R":

s ~ argmin my(s), s.t. ||s|| < Ay
sER"

Evaluate f(xx + sk) and calculate ratio

f(xk) — f(xk +sk)  true decrease

Pk = mi(0) — my(sk) ~ predicted decrease

Accept/reject step based on px and update trust region radius
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Random subspace MBTR algorithm

for k=0,1,... do
Define an affine subspace x, + D¢ RP by selecting D, € R"P
Construct a model my in RP

Approximately solve the trust-region subproblem in RP:

Sk & argmin mk(3), s.t. ||5]] < Ak
SERP
and calculate the corresponding step s, € R”
Evaluate f(xx + s¢) and calculate ratio

f(xk) — f(xk +5sk)  true decrease
mi(0) — mx(Sk)  predicted decrease

Pk =

Accept/reject step based on py and update trust region radius
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Model construction
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Q-fully quadratic models

Definition. Let f € C2,x € R",A > 0, and Q € R"*P
We say that {ma : R? — R} (g 2 is @ class of Q-fully quadratic models

of f at x if there exist 7 (x), kg(x), kn(x) > 0 such that for all A € (0,A]
and ||35]] < A,

IF(x + Q3) — Ma(3)] < rr(x)A3,
HQTW(X +Q8) - VfﬁA(§)H < kg(x)A2,

| @7V (x + @9)@ - V2 (8) | < ra(x)2

10/35



Generalized simplex gradient and Hessian

Definition. [Hare, Jarry-Bolduc, 2020][Hare, Jarry-Bolduc, Planiden, 2023]
Let xX° € R" and D = [dy - - - dp] € R"™*P
The generalized simplex gradient of f at x° over D is defined by

Vsf(x% D) = (DT)T 5¢(x%; D)

The generalized simplex Hessian of f at x° over D is defined by

Vif(x% D) = (DT)Jr Sver(x% D)
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Constructing Q-fully quadratic models

Theorem. Suppose D = @R has full column rank, where Q € R"*P
Let

m(x) = F(x°) + (2Vsf(x% D) — VsF(x°%;2D)) " (x — x°)
+3 (x —x%) T V2F(x% D) (x — x°)
Define model m : RP — R by

m(3) = m(x° + Q3)

If f € C?>T and D has full-column rank, then m belongs to a class of
Q-fully quadratic models of f at x° with constants rxf, Kgy Kh
monotonically increasing w.r.t. ||DT||
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Subspace selection
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a-well aligned matrices

Definition. [Cartis, Roberts, 2023]
Let f e Cl,x € R", and a > 0
We say that A € R"*Z is a-well aligned for f at x if

|ATVE )| = a IV FGl
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Constructing a-well aligned matrices

Theorem. [Dzahini, Wild, 2022]

Suppose a,ds € (0,1) and z > 4(1 — a)~2In(1/8s)
Let A € R"*# such that Aj ~ N(0,1/z)

Then for any v € R”,

Pl|aTv]zalvi] =1~

The P[] gives the probability of a random variable
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Constructing a-well aligned matrices

Theorem. [Dzahini, Wild, 2022]

Suppose a,ds € (0,1) and z > 4(1 — a)~2In(1/8s)
Let A € R"*# such that Aj ~ N(0,1/z)

Then for any v € R”,

Pl|aTv]zalvi] =1~

In particular, given f € C! and x € R, A is a-well aligned for f at x with
probability at least 1 — g, i.e.,

P ATV | 2 IV GOl = 1- 5

The P[] gives the probability of a random variable
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Reusing past information to construct subspaces

Suppose Dy has the form Dy = [DY DE] € R™P, where
° D,ﬂj € R™(P=Prand) is picked from Dj_q

° D;f € RM*Prand is randomly generated
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Reusing past information to construct subspaces

Suppose Dy has the form Dy = [DY DE] € R™P, where
° D,ﬂj € R™(P=Prand) is picked from Dj_q
° D;f € RM*Prand is randomly generated
o DY is picked such that ||(DY)T] is as small as possible
e DF consists of orthogonal columns and col(DF) C col(DY)*
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Constructing Dy

Recall: kf, kg, kp monotonically increasing w.r.t. HD}:H
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Constructing Dy

Recall: kf, kg, kp monotonically increasing w.r.t. HD}:H
Idea: Minimize HD;EH = 1/0min(Dk) < Maximize omin(Dk)
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Constructing Dy

Recall: kf, kg, kp monotonically increasing w.r.t. ||D}:||
Idea: Minimize HD;EH = 1/0min(Dk) < Maximize omin(Dk)

Theorem. Let D = [dy---dg_1] € R™(971) where 2 < g < n

Define D(x) : R” — R"™9 by D(x) = [D x|
Then for all x € R” with ||x|| = A, we have

Fmin(D(x)) < min {omin(D), A} .
In particular, if x* € R with ||x*|| = A satisfies d, x* = 0 for all d; € D,

then N
Omin(D(x")) = min {omin(D), A} .
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Constructing D/

Idea: am;n(D,f/) should be as large as possible

Select p directions to previous sample points as the columns of D,y
for removed = 1, ..., prang do
Denote DY = [dY - - dY]
fori=1,...,mdo
Define M; = [d ---dY; dY,---dY] and compute

HaiUH4 )
9,’ = Omin M,‘ - Max ,].
( ) ( At—f—l

Remove the direction with the largest ¢; from DV
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Constructing D

Idea: D consists of orthogonal columns and col(Df) C col(D{)*

Generate A € R"*Prand with Ajj ~ N(O 1/Prand)
Factorize D}(J = QR and calculate A = A — QQRTA

Factorize A QR
Return AkQ
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Subspace quality

Theorem. Suppose f € C*,a,ds € (0,1) and prang > 4(1 — a)~2In(1/8s)
Then there exists ap > 0 such that Dy is ap-well-aligned for f at xx with
probability at least 1 — dg
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QARSTA

for k=0,1,... do
Define an affine subspace xx + DxRP by selecting Dy = [D,ﬁj Df]
Construct a Q,-fully quadratic model my in RP

Apply the remaining part of the random subspace MBTR algorithm
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© Convergence analysis
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e f € C?** and bounded below
o |V2my|| < kp for all k

@ Solution 5 of the trust-region subproblem satisfy

- T _ IV (0)| )
_ > —
Ak (0) — Mk (Sk) = 5 [[VA(0)] min (Ak’ max {[[ V2|, 1}

@ Each Dy is ap-well aligned for f at xj, with probability at least 1 — dg
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Convergence results

Theorem. For all € > 0, there exist C > 0 and a sufficiently large K s.t.

P [min IV F(xi)]|| < e} >1— e C(KH)
k<K

The P[] and E[-] give the probability and expected value of a random variable
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Convergence results

Theorem. For all € > 0, there exist C > 0 and a sufficiently large K s.t.
P [min IV F(xi)]|| < e} >1— e C(KH)
k<K
Theorem. If QARSTA is run with A, = 0, then

| 19/(x0)]| =0] =1

The P[] and E[-] give the probability and expected value of a random variable
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Convergence results

Theorem. For all € > 0, there exist C > 0 and a sufficiently large K s.t.
P [min IV F(xi)]|| < e} >1— e C(KH)
k<K
Theorem. If QARSTA is run with A, = 0, then
| 19/(x0)]| =0] =1

Theorem. E [min{k : |Vf(xk)|| < €}] = 0(672)

The P[-] and E[-] give the probability and expected value of a random variable
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@ Numerical experiments
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@ Is it beneficial to use quadratic models instead of linear models?
@ What is a good choice of p and pyang?

@ Exploiting the structure of objective functions?
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Test problems

Two sets from the CUTEst collection [Gould, Orban, Toint, 2015] with
dimension n ~ 1000:

@ 73 unconstrained problems with various objective functions

@ 32 unconstrained nonlinear least-squares problems, i.e.,

min f(x) = % > &i(x)?
i=1

x€R"

27/35



Solvers

Models:
@ Linear model (p + 1 fevals)
e Underdetermined quadratic model (2p + 1 fevals)
o Determined quadratic model ((p + 1)(p + 2)/2 fevals)
@ Square-of-linear model (p + 1 fevals) *On test set 2 only

Parameters:
© p=1pand =1
° p=10,pranga =1
o p=10,prand = 3
e p =10, prand = 10

Success is defined as finding xx such that
f(xk) < f(x*) +7(f(x0) — f(x*)) within 100(n + 1) fevals
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Comparing linear and quadratic models based on runtime

Performance profile (n=1000), T =0.500
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Comparing linear and quadratic models based on evals

Proportion of problems solved

Performance profile (n=1000), T =0.001
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Performance on nonlinear least-squares problems (runtime)

Proportion of problems solved
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Performance profile (n = 1000), T=0.001
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Performance on nonlinear least-squares problems (evals)

Performance profile (n = 1000), T=0.001
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© Summary
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In this research, we:

@ Provided a Q-fully quadratic modeling technique that is easy to
analyze and implement

@ Proposed an algorithm with convergence analysis for general
unconstrained DFO problems

@ Demonstrated efficiency of quadratic models and exploiting the
structure of objective functions

Future directions:
@ Use a hybrid of linear and quadratic models

@ Handle constrained DFO problems
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Thank you

@ https://github.com/yiwchen233/QARSTA

@ Y. Chen, W. Hare, and A. Wiebe. “Q-fully quadratic modeling and its
application in a random subspace derivative-free method”. In:
Computational Optimization and Applications (2024)
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