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Derivative-free optimization (DFO)

Consider the optimization problem

min
x∈Rn

f (x)

where f is given by a blackbox:

x f(x)

Derivative-free optimization is the mathematical study of optimization
algorithms that do not use derivatives

Note: It does not mean that the derivatives do not exist
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Model-based DFO

Model-based DFO methods:

Use function values to build an approximation model of the objective

Use the model to guide future iterations

Limitations:

Function evaluations are too expensive for large problems

They are primarily designed for small- to medium-scale problems
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Improving scalability by subspace decomposition

Idea:

1. Select a low-dimensional affine subspace

2. Build and minimize a model to compute a step in this subspace

3. Change the affine subspace at the next iteration

Some existing papers:
[Zhang, 2012]; [Dzahini, Wild, 2022]; [Menickelly, 2023];
[Cartis, Roberts, 2023]
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Model-based trust-region (MBTR) algorithm

for k = 0, 1, ... do
Construct a model mk in Rn:

mk(s) = f (xk) + g⊤
k s +

1

2
s⊤Hks

Approximately solve the trust-region subproblem in Rn:

sk ≈ argmin
s∈Rn

mk(s), s.t. ∥s∥ ≤ ∆k

Evaluate f (xk + sk) and calculate ratio

ρk =
f (xk)− f (xk + sk)

mk(0)−mk(sk)
=

true decrease

predicted decrease

Accept/reject step based on ρk and update trust region radius
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Random subspace MBTR algorithm

for k = 0, 1, ... do
Define an affine subspace xk + DkRp by selecting Dk ∈ Rn×p

Construct a model “mk in Rp

Approximately solve the trust-region subproblem in Rp:

ŝk ≈ argmin
ŝ∈Rp

“mk(ŝ), s.t. ∥ŝ∥ ≤ ∆k

and calculate the corresponding step sk ∈ Rn

Evaluate f (xk + sk) and calculate ratio

ρk =
f (xk)− f (xk + sk)“mk(0)− “mk(ŝk)

=
true decrease

predicted decrease

Accept/reject step based on ρk and update trust region radius
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Model construction
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Q-fully quadratic models

Definition. Let f ∈ C2, x ∈ Rn, ∆̄ > 0, and Q ∈ Rn×p

We say that {“m∆ : Rp → R}∆∈(0,∆̄] is a class of Q-fully quadratic models

of f at x if there exist κf (x), κg (x), κh(x) > 0 such that for all ∆ ∈ (0, ∆̄]
and ∥ŝ∥ ≤ ∆,

|f (x + Qŝ)− “m∆(ŝ)| ≤ κf (x)∆
3,∥∥∥Q⊤∇f (x + Qŝ)−∇“m∆(ŝ)

∥∥∥ ≤ κg (x)∆
2,∥∥∥Q⊤∇2f (x + Qŝ)Q −∇2“m∆(ŝ)

∥∥∥ ≤ κh(x)∆
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Generalized simplex gradient and Hessian

Definition. [Hare, Jarry-Bolduc, 2020][Hare, Jarry-Bolduc, Planiden, 2023]
Let x0 ∈ Rn and D = [d1 · · · dp] ∈ Rn×p

The generalized simplex gradient of f at x0 over D is defined by

∇S f (x
0;D) =

Ä
D⊤
ä†

δf (x
0;D)

The generalized simplex Hessian of f at x0 over D is defined by

∇2
S f (x

0;D) =
Ä
D⊤
ä†

δ∇S f (x
0;D)
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Constructing Q-fully quadratic models

Theorem. Suppose D = QR has full column rank, where Q ∈ Rn×p

Let

m(x) = f (x0) +
(
2∇S f (x

0;D)−∇S f (x
0; 2D)

)⊤ (
x − x0

)
+

1

2

(
x − x0

)⊤∇2
S f (x

0;D)
(
x − x0

)
Define model “m : Rp → R by“m(ŝ) = m(x0 + Qŝ)

If f ∈ C2+ and D has full-column rank, then “m belongs to a class of
Q-fully quadratic models of f at x0 with constants κf , κg , κh
monotonically increasing w.r.t. ∥D†∥
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Subspace selection
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α-well aligned matrices

Definition. [Cartis, Roberts, 2023]
Let f ∈ C1, x ∈ Rn, and α > 0
We say that A ∈ Rn×z is α-well aligned for f at x if∥∥∥A⊤∇f (x)

∥∥∥ ≥ α ∥∇f (x)∥
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Constructing α-well aligned matrices

Theorem. [Dzahini, Wild, 2022]
Suppose α, δS ∈ (0, 1) and z ≥ 4(1− α)−2 ln(1/δS)
Let A ∈ Rn×z such that Aij ∼ N (0, 1/z)
Then for any v ∈ Rn,

P
[∥∥∥A⊤v

∥∥∥ ≥ α ∥v∥
]
≥ 1− δS

In particular, given f ∈ C1 and x ∈ Rn, A is α-well aligned for f at x with
probability at least 1− δS , i.e.,

P
[∥∥∥A⊤∇f (x)

∥∥∥ ≥ α ∥∇f (x)∥
]
≥ 1− δS

The P[·] gives the probability of a random variable
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Reusing past information to construct subspaces

Suppose Dk has the form Dk = [DU
k DR

k ] ∈ Rn×p, where

DU
k ∈ Rn×(p−prand) is picked from Dk−1

DR
k ∈ Rn×prand is randomly generated

DU
k is picked such that ∥(DU

k )
†∥ is as small as possible

DR
k consists of orthogonal columns and col(DR

k ) ⊆ col(DU
k )

⊥
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Constructing Dk

Recall: κf , κg , κh monotonically increasing w.r.t. ∥D†
k∥

Idea: Minimize ∥D†
k∥ = 1/σmin(Dk) ⇔ Maximize σmin(Dk)

Theorem. Let ‹D = [d1 · · · dq−1] ∈ Rn×(q−1) where 2 ≤ q ≤ n

Define D(x) : Rn → Rn×q by D(x) = [‹D x ]
Then for all x ∈ Rn with ∥x∥ = ∆, we have

σmin(D(x)) ≤ min
¶
σmin(‹D),∆

©
.

In particular, if x∗ ∈ Rn with ∥x∗∥ = ∆ satisfies d⊤
i x∗ = 0 for all di ∈ ‹D,

then
σmin(D(x∗)) = min

¶
σmin(‹D),∆

©
.
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Constructing DU
k

Idea: σmin(D
U
k ) should be as large as possible

Select p directions to previous sample points as the columns of DU
k

for removed = 1, ..., prand do
Denote DU

k = [dU
1 · · · dU

m ]
for i = 1, ...,m do

Define Mi =
[
dU
1 · · · dU

i−1 dU
i+1 · · · dU

m

]
and compute

θi = σmin(Mi ) ·max

(∥∥dU
i

∥∥4
∆4

k+1

, 1

)

Remove the direction with the largest θi from DU
k
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Constructing DR
k

Idea: DR
k consists of orthogonal columns and col(DR

k ) ⊆ col(DU
k )

⊥

Generate A ∈ Rn×prand with Aij ∼ N (0, 1/prand)

Factorize DU
k = QR and calculate Ã = A− QQ⊤A

Factorize Ã = ‹QR̃
Return ∆k

‹Q
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Subspace quality

Theorem. Suppose f ∈ C1, α, δS ∈ (0, 1) and prand ≥ 4(1− α)−2 ln(1/δS)
Then there exists αD > 0 such that Dk is αD-well-aligned for f at xk with
probability at least 1− δS
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QARSTA

for k = 0, 1, ... do
Define an affine subspace xk + DkRp by selecting Dk = [DU

k DR
k ]

Construct a Qk -fully quadratic model “mk in Rp

Apply the remaining part of the random subspace MBTR algorithm
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Assumptions

f ∈ C2+ and bounded below

∥∇2“mk∥ ≤ κH for all k

Solution ŝk of the trust-region subproblem satisfy“mk(0)− “mk(ŝk) ≥
1

2
∥∇“mk(0)∥min

Å
∆k ,

∥∇“mk(0)∥
max {∥∇2“mk∥ , 1}

ã
Each Dk is αD-well aligned for f at xk with probability at least 1− δS
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Convergence results

Theorem. For all ϵ > 0, there exist C > 0 and a sufficiently large K s.t.

P
ï
min
k≤K

∥∇f (xk)∥ ≤ ϵ

ò
≥ 1− e−C(K+1)

Theorem. If QARSTA is run with ∆min = 0, then

P
ï
inf
k≥0

∥∇f (xk)∥ = 0

ò
= 1

Theorem. E [min {k : ∥∇f (xk)∥ ≤ ϵ}] = O(ϵ−2)

The P[·] and E[·] give the probability and expected value of a random variable
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Questions

Is it beneficial to use quadratic models instead of linear models?

What is a good choice of p and prand?

Exploiting the structure of objective functions?
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Test problems

Two sets from the CUTEst collection [Gould, Orban, Toint, 2015] with
dimension n ≈ 1000:

73 unconstrained problems with various objective functions

32 unconstrained nonlinear least-squares problems, i.e.,

min
x∈Rn

f (x) =
1

2

m∑
i=1

gi (x)
2
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Solvers

Models:

Linear model (p + 1 fevals)

Underdetermined quadratic model (2p + 1 fevals)

Determined quadratic model ((p + 1)(p + 2)/2 fevals)

Square-of-linear model (p + 1 fevals) *On test set 2 only

Parameters:

p = 1, prand = 1

p = 10, prand = 1

p = 10, prand = 3

p = 10, prand = 10

Success is defined as finding xk such that
f (xk) ≤ f (x∗) + τ (f (x0)− f (x∗)) within 100(n + 1) fevals
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Comparing linear and quadratic models based on runtime
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Comparing linear and quadratic models based on evals
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Performance on nonlinear least-squares problems (runtime)
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Performance on nonlinear least-squares problems (evals)
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Summary

In this research, we:

Provided a Q-fully quadratic modeling technique that is easy to
analyze and implement

Proposed an algorithm with convergence analysis for general
unconstrained DFO problems

Demonstrated efficiency of quadratic models and exploiting the
structure of objective functions

Future directions:

Use a hybrid of linear and quadratic models

Handle constrained DFO problems
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Thank you
https://github.com/yiwchen233/QARSTA

Y. Chen, W. Hare, and A. Wiebe. “Q-fully quadratic modeling and its
application in a random subspace derivative-free method”. In:
Computational Optimization and Applications (2024)
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