Q-fully quadratic modeling and its application in a random subspace derivative-free method

Yiwen Chen

Department of Mathematics University of British Columbia

April, 2024

Joint work with Dr. Warren Hare and Dr. Amy Wiebe

Introduction

- 2 Quadratic approximation random subspace trust-region algorithm
- 3 Convergence analysis
- 4 Numerical experiments
- 5 Summary

Consider the optimization problem

 $\min_{x\in\mathbb{R}^n}f(x)$

where f is given by a blackbox:

Consider a chemical process:

Temperature
Humidity
Reaction time
$$= x \longrightarrow f(x) =$$
Product purity

Goal:

$$\max\{f(x): x_1 \in [273, 373], x_2 \in [30, 60], x_3 \in [1, 10]\}$$

Consider a computer simulation of earthquakes:

Height
Material
Structure
$$= x \longrightarrow f(x) =$$
Stability of building

Goal:

 $\max{f(x) : x \text{ satisfies some constraints}}$

Derivative-free optimization is the mathematical study of optimization algorithms that do not use derivatives

Note: It does not mean that the derivatives do not exist

Direct search methods

- Maintain an incumbent solution and check a finite number of trial points for potential decrease
- E.g., Coordinate Search, MADS

Direct search methods

- Maintain an incumbent solution and check a finite number of trial points for potential decrease
- E.g., Coordinate Search, MADS

Model-based methods

- Use function values to build an approximation model of the objective
- Use the model to guide future iterations

Definition. For a given function f(x) and set $Y = \{y^0, ..., y^s\}$, a polynomial m(x) is a polynomial interpolation model of f(x) if

$$m(y^{i}) = f(y^{i}), \quad i = 0, ..., s$$

Definition. For a given function f(x) and set $Y = \{y^0, ..., y^s\}$, a polynomial m(x) is a polynomial interpolation model of f(x) if

$$m(y^{i}) = f(y^{i}), \quad i = 0, ..., s$$

Note: In practice, m(x) is determined by finding $\alpha_0, ..., \alpha_t$ such that

$$m(y^{i}) = \sum_{j=0}^{t} \alpha_{j} \phi_{j}(y^{i}) = f(y^{i}), \quad i = 0, ..., s$$

where the set of functions $\phi = \{\phi_0, ..., \phi_t\}$ is a polynomial basis

Let $\phi = \{1, x_1, x_2, ..., x_d\}$ and $Y = \{y^0, ..., y^d\}$ Then a linear interpolation model m(x) is determined by finding $\alpha_0, ..., \alpha_d$ such that

$$m(y^i) = \alpha_0 + \alpha_1 y_1^i + \dots + \alpha_d y_d^i = f(y^i), \quad i = 0, \dots, d$$

where y_i^i is the *j*-th element of y^i

Quadratic interpolation model

Let $\phi = \{1, x_1, x_2, ..., x_d, \frac{x_1^2}{2}, x_1x_2, ..., x_{d-1}x_d, \frac{x_d^2}{2}\}$ and $Y = \{y^0, ..., y^s\}$ Then a quadratic interpolation model m(x) is determined by finding $\alpha_0, ..., \alpha_{\frac{(d+1)(d+2)}{2}-1}$ such that

$$m(y^{i}) = \alpha_{0} + \alpha_{1}y_{1}^{i} + \dots + \alpha_{d}y_{d}^{i} + \alpha_{d+1}\frac{(y_{1}^{i})^{2}}{2} + \dots + \alpha_{\underline{(d+1)(d+2)}} - \frac{(y_{d}^{i})^{2}}{2} = f(y^{i}), \quad i = 0, ..., s$$

Quadratic interpolation model

Let $\phi = \{1, x_1, x_2, ..., x_d, \frac{x_1^2}{2}, x_1x_2, ..., x_{d-1}x_d, \frac{x_d^2}{2}\}$ and $Y = \{y^0, ..., y^s\}$ Then a quadratic interpolation model m(x) is determined by finding $\alpha_0, ..., \alpha_{\frac{(d+1)(d+2)}{2}-1}$ such that

$$m(y^{i}) = \alpha_{0} + \alpha_{1}y_{1}^{i} + \dots + \alpha_{d}y_{d}^{i} + \alpha_{d+1}\frac{(y_{1}^{i})^{2}}{2} + \dots + \alpha_{\frac{(d+1)(d+2)}{2}-1}\frac{(y_{d}^{i})^{2}}{2} = f(y^{i}), \quad i = 0, ..., s$$

Note: If $s = \frac{(d+1)(d+2)}{2} - 1$ and the system has full rank, then m(x) is called a determined quadratic interpolation model If $s < \frac{(d+1)(d+2)}{2} - 1$ and the system has full rank, then m(x) is called an underdetermined quadratic interpolation model Limitations:

• Function evaluations are too expensive for large problems

d	1	10	100	1000
(d+1)(d+2)/2	3	66	5151	501501

• They are primarily designed for small- to medium-scale problems

Idea:

- 1. Select a low-dimensional affine subspace
- 2. Build and minimize a model to compute a step in this subspace
- 3. Change the affine subspace at the next iteration

Some existing papers: [Zhang, 2012]; [Dzahini, Wild, 2022]; [Menickelly, 2023]; [Cartis, Roberts, 2023]

Is it beneficial to use quadratic models instead of linear models?

Introduction

2 Quadratic approximation random subspace trust-region algorithm

3 Convergence analysis

- 4 Numerical experiments
- 5 Summary

Model-based trust-region (MBTR) algorithm

for k = 0, 1, ... do | Construct a model m_k in \mathbb{R}^n :

$$m_k(s) = f(x_k) + g_k^\top s + \frac{1}{2}s^\top H_k s$$

Approximately solve the trust-region subproblem in \mathbb{R}^n :

$$s_kpprox rgmin_{s\in \mathbb{R}^n}m_k(s), \;\; s.t. \; \|s\|\leq \Delta_k$$

Evaluate $f(x_k + s_k)$ and calculate ratio

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m_k(\mathbf{0}) - m_k(s_k)} = \frac{\text{true decrease}}{\text{predicted decrease}}$$

Accept/reject step based on ρ_k and update trust region radius

Random subspace MBTR algorithm

for k = 0, 1, ... do Define an affine subspace $x_k + D_k \mathbb{R}^p$ by selecting $D_k \in \mathbb{R}^{n \times p}$ Construct a model \widehat{m}_{k} in \mathbb{R}^{p} Approximately solve the trust-region subproblem in \mathbb{R}^{p} : $\widehat{s}_k \approx \operatorname{argmin} \widehat{m}_k(\widehat{s}), \quad s.t. \quad \|\widehat{s}\| \leq \Delta_k$ $\widehat{\mathbf{s}} \in \mathbb{R}^p$ and calculate the corresponding step $s_k \in \mathbb{R}^n$ Evaluate $f(x_k + s_k)$ and calculate ratio $\rho_{k} = \frac{f(x_{k}) - f(x_{k} + s_{k})}{\widehat{m}_{k}(\mathbf{0}) - \widehat{m}_{k}(\widehat{s}_{k})} = \frac{\text{true decrease}}{\text{predicted decrease}}$ Accept/reject step based on ρ_k and update trust region radius

Model construction

Definition. Let $f \in C^2, x \in \mathbb{R}^n, \overline{\Delta} > 0$, and $Q \in \mathbb{R}^{n \times p}$ We say that $\{\widehat{m}_\Delta : \mathbb{R}^p \to \mathbb{R}\}_{\Delta \in (0,\overline{\Delta}]}$ is a class of Q-fully quadratic models of f at x if there exist $\kappa_{ef}(x), \kappa_{eg}(x), \kappa_{eh}(x) > 0$ such that for all $\Delta \in (0, \overline{\Delta}]$ and $\|\widehat{s}\| \leq \Delta$,

$$egin{aligned} &|f(x+Q\widehat{s})-\widehat{m}_{\Delta}(\widehat{s})|\leq\kappa_{ef}(x)\Delta^{3},\ &\left\|Q^{ op}
abla f(x+Q\widehat{s})-
abla \widehat{m}_{\Delta}(\widehat{s})
ight\|\leq\kappa_{eg}(x)\Delta^{2},\ &\left\|Q^{ op}
abla^{ op} f(x+Q\widehat{s})Q-
abla^{2}\widehat{m}_{\Delta}(\widehat{s})
ight\|\leq\kappa_{eh}(x)\Delta \end{aligned}$$

Definition. [Hare, Jarry-Bolduc, 2020] Let $x^0 \in \mathbb{R}^n$ and $D = [d_1 \cdots d_p] \in \mathbb{R}^{n \times p}$ The generalized simplex gradient of f at x^0 over D is defined by

$$\nabla_{\mathcal{S}}f(x^{0};D)=\left(D^{\top}\right)^{\dagger}\delta_{f}(x^{0};D)$$

where

$$\delta_f(x^0; D) = \begin{bmatrix} f(x^0 + d_1) - f(x^0) \\ f(x^0 + d_2) - f(x^0) \\ \vdots \\ f(x^0 + d_p) - f(x^0) \end{bmatrix}$$

Definition. [Hare, Jarry-Bolduc, Planiden, 2023] Let $x^0 \in \mathbb{R}^n$ and $D = [d_1 \cdots d_p] \in \mathbb{R}^{n \times p}$ The generalized simplex Hessian of f at x^0 over D is defined by

$$abla_{\mathcal{S}}^2 f(x^0; D) = \left(D^{\top}\right)^{\dagger} \delta_{\nabla_{\mathcal{S}} f}(x^0; D),$$

where

$$\delta_{\nabla_{S}f}(x^{0}; D) = \begin{bmatrix} (\nabla_{S}f(x^{0} + d_{1}; D) - \nabla_{S}f(x^{0}; D))^{\top} \\ (\nabla_{S}f(x^{0} + d_{2}; D) - \nabla_{S}f(x^{0}; D))^{\top} \\ \vdots \\ (\nabla_{S}f(x^{0} + d_{p}; D) - \nabla_{S}f(x^{0}; D))^{\top} \end{bmatrix}$$

Constructing Q-fully quadratic models

Definition. Suppose D = QR has full column rank, where $Q \in \mathbb{R}^{n \times p}$ Let

$$m(x) = f(x^{0}) + (2\nabla_{S}f(x^{0}; D) - \nabla_{S}f(x^{0}; 2D))^{\top} (x - x^{0}) + \frac{1}{2} (x - x^{0})^{\top} \nabla_{S}^{2}f(x^{0}; D) (x - x^{0})$$

The model $\widehat{m}: \mathbb{R}^p \to \mathbb{R}$ is defined by

$$\widehat{m}(\widehat{s}) = m(x^0 + Q\widehat{s})$$

The $2\nabla_S f(x^0; D) - \nabla_S f(x^0; 2D)$ is a special case of the Adapted Centred Simplex Gradient, see Y. Chen and W. Hare. "Adapting the centred simplex gradient to compensate for misaligned sample points". In: *IMA J. Numer. Anal.* (2023)

Theorem. \widehat{m} is a determined quadratic interpolation model of $f(x^0 + Q\widehat{s})$

Theorem. \widehat{m} is a determined quadratic interpolation model of $f(x^0 + Q\widehat{s})$

Theorem. If $f \in C^{2+}$ and D has full-column rank, then \widehat{m} belongs to a class of Q-fully quadratic models of f at x^0 with constants $\kappa_{ef}, \kappa_{eg}, \kappa_{eh}$ monotonically increasing w.r.t. $\|D^{\dagger}\|$

Subspace selection

Definition. [Cartis, Roberts, 2023] Let $f \in C^1, x \in \mathbb{R}^n$, and $\alpha > 0$ We say that $A \in \mathbb{R}^{n \times z}$ is α -well-aligned for f at x if

$$\left\| A^{\top} \nabla f(x) \right\| \geq \alpha \left\| \nabla f(x) \right\|$$

Theorem. [Dzahini, Wild, 2022] Suppose $\alpha, \delta_S \in (0, 1)$ and $z \ge 4(1 - \alpha)^{-2} \ln(1/\delta_S)$ Let $A \in \mathbb{R}^{n \times z}$ such that $A_{ij} \sim \mathcal{N}(0, 1/z)$ Then for any $v \in \mathbb{R}^n$,

$$\mathbb{P}\left[\left\|\boldsymbol{A}^{\top}\boldsymbol{v}\right\| \geq \alpha \left\|\boldsymbol{v}\right\|\right] \geq 1 - \delta_{S}$$

The $\mathbb{P}[\cdot]$ gives the probability of a random variable

Theorem. [Dzahini, Wild, 2022] Suppose $\alpha, \delta_S \in (0, 1)$ and $z \ge 4(1 - \alpha)^{-2} \ln(1/\delta_S)$ Let $A \in \mathbb{R}^{n \times z}$ such that $A_{ij} \sim \mathcal{N}(0, 1/z)$ Then for any $v \in \mathbb{R}^n$,

$$\mathbb{P}\left[\left\|\boldsymbol{A}^{\top}\boldsymbol{v}\right\| \geq \alpha \left\|\boldsymbol{v}\right\|\right] \geq 1 - \delta_{S}$$

In particular, given $f \in C^1$ and $x \in \mathbb{R}^n$, A is α -well-aligned for f at x with probability at least $1 - \delta_S$, i.e.,

$$\mathbb{P}\left[\left\|\boldsymbol{A}^{\top}\nabla f(\boldsymbol{x})\right\| \geq \alpha \left\|\nabla f(\boldsymbol{x})\right\|\right] \geq 1 - \delta_{\mathcal{S}}$$

The $\mathbb{P}[\cdot]$ gives the probability of a random variable

Suppose D_k has the form $D_k = [D_k^U \ D_k^R] \in \mathbb{R}^{n \times p}$, where

- $D_k^U \in \mathbb{R}^{n \times (p p_{rand})}$ is picked from D_{k-1}
- $D_k^R \in \mathbb{R}^{n imes p_{\mathrm{rand}}}$ is randomly generated

Suppose D_k has the form $D_k = [D_k^U \ D_k^R] \in \mathbb{R}^{n \times p}$, where

- $D_k^U \in \mathbb{R}^{n imes (p-p_{\mathrm{rand}})}$ is picked from D_{k-1}
- $D_k^R \in \mathbb{R}^{n imes p_{ ext{rand}}}$ is randomly generated
- D_k^U is picked such that $\sigma_{\min}(D_k^U)$ is as large as possible
- D_k^R consists of orthogonal columns and $\operatorname{col}(D_k^R) \subseteq \operatorname{col}(D_k^U)^{\perp}$

Recall: $\kappa_{ef}, \kappa_{eg}, \kappa_{eh}$ monotonically increasing w.r.t. $\|D_k^{\dagger}\|$

Recall: $\kappa_{ef}, \kappa_{eg}, \kappa_{eh}$ monotonically increasing w.r.t. $\|D_k^{\dagger}\|$ Idea: Minimize $\|D_k^{\dagger}\| = 1/\sigma_{\min}(D_k) \Leftrightarrow \text{Maximize } \sigma_{\min}(D_k)$ Recall: $\kappa_{ef}, \kappa_{eg}, \kappa_{eh}$ monotonically increasing w.r.t. $\|D_k^{\dagger}\|$ Idea: Minimize $\|D_k^{\dagger}\| = 1/\sigma_{\min}(D_k) \Leftrightarrow \text{Maximize } \sigma_{\min}(D_k)$

Theorem. Let
$$\widetilde{D} = [d_1 \cdots d_{q-1}] \in \mathbb{R}^{n \times (q-1)}$$
 where $2 \le q \le n$
Define $D(x) : \mathbb{R}^n \to \mathbb{R}^{n \times q}$ by $D(x) = [\widetilde{D} \ x]$
Then for all $x \in \mathbb{R}^n$ with $||x|| = \Delta$, we have

$$\sigma_{\min}(D(x)) \leq \min\left\{\sigma_{\min}(\widetilde{D}),\Delta\right\}.$$

In particular, if $x^* \in \mathbb{R}^n$ with $||x^*|| = \Delta$ satisfies $d_i^\top x^* = 0$ for all $d_i \in \widetilde{D}$, then

$$\sigma_{\min}(D(x^*)) = \min \left\{ \sigma_{\min}(\widetilde{D}), \Delta \right\}.$$

Idea: $\sigma_{\min}(D_k^U)$ should be as large as possible

Select *p* directions to previous sample points as the columns of D_k^U for removed = 1, ..., p_{rand} do Denote $D_k^U = [d_1^U \cdots d_m^U]$ for i = 1, ..., m do Define $M_i = [d_1^U \cdots d_{i-1}^U \ d_{i+1}^U \cdots d_m^U]$ and compute $\theta_i = \sigma_{min}(M_i) \cdot max\left(\frac{||d_i^U||^4}{\Delta_{k+1}^4}, 1\right)$

Remove the direction with the largest θ_i from D_k^U

Idea: D_k^R consists of orthogonal columns and $\operatorname{col}(D_k^R) \subseteq \operatorname{col}(D_k^U)^{\perp}$

Generate $A \in \mathbb{R}^{n \times p_{\text{rand}}}$ with $A_{ij} \sim \mathcal{N}(0, 1/p_{\text{rand}})$ Factorize $D_k^U = QR$ and calculate $\widetilde{A} = A - QQ^{\top}A$ Factorize $\widetilde{A} = \widetilde{Q}\widetilde{R}$ Return $\Delta_k \widetilde{Q}$

Algorithm modified from C. Cartis and L. Roberts. "Scalable subspace methods for derivative-free nonlinear least-squares optimization". In: *Math. Program.* 199.1-2 (2023), pp. 461–524

Theorem. Suppose $f \in C^1, \alpha, \delta_S \in (0, 1)$ and $p_{\text{rand}} \ge 4(1 - \alpha)^{-2} \ln(1/\delta_S)$ Then there exists $\alpha_D > 0$ such that D_k is α_D -well-aligned for f at x_k with probability at least $1 - \delta_S$

QARSTA

for k = 0, 1, ... do

Define an affine subspace $x_k + D_k \mathbb{R}^p$ by selecting $D_k = [D_k^U D_k^R]$ Construct a Q_k -fully quadratic model \widehat{m}_k in \mathbb{R}^p

Approximately solve the trust-region subproblem in \mathbb{R}^{p} :

$$\widehat{s}_k pprox rgmin_{\widehat{s} \in \mathbb{R}^p} \widehat{m}_k(\widehat{s}), \;\; s.t. \; \|\widehat{s}\| \leq \Delta_k$$

and calculate the corresponding step $s_k \in \mathbb{R}^n$ Evaluate $f(x_k + s_k)$ and calculate ratio

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{\widehat{m}_k(\mathbf{0}) - \widehat{m}_k(\widehat{s}_k)} = \frac{\text{true decrease}}{\text{predicted decrease}}$$

Accept/reject step based on ρ_k and update trust region radius

1 Introduction

2 Quadratic approximation random subspace trust-region algorithm

3 Convergence analysis

4 Numerical experiments

5 Summary

- $f \in \mathcal{C}^{2+}$ and bounded below
- $\|\nabla^2 \widehat{m}_k\| \leq \kappa_H$ for all k
- Solution \hat{s}_k of the trust-region subproblem satisfy

$$\widehat{m}_k(\mathbf{0}) - \widehat{m}_k(\widehat{s}_k) \geq \frac{1}{2} \left\| \nabla \widehat{m}_k(\mathbf{0}) \right\| \min\left(\Delta_k, \frac{\left\| \nabla \widehat{m}_k(\mathbf{0}) \right\|}{\max\left\{ \left\| \nabla^2 \widehat{m}_k \right\|, 1 \right\}} \right)$$

• Each D_k is α_D -well-aligned for f at x_k with probability at least $1 - \delta_S$

Theorem. For all $\epsilon > 0$, there exist C > 0 and a sufficiently large K s.t.

$$\mathbb{P}\left[\min_{k\leq K} \|\nabla f(x_k)\| \leq \epsilon\right] \geq 1 - e^{-C(K+1)}$$

The $\mathbb{P}[\cdot]$ and $\mathbb{E}[\cdot]$ give the probability and expected value of a random variable

Theorem. For all $\epsilon > 0$, there exist C > 0 and a sufficiently large K s.t.

$$\mathbb{P}\left[\min_{k\leq K} \|\nabla f(x_k)\| \leq \epsilon\right] \geq 1 - e^{-C(K+1)}$$

Theorem. If QARSTA is run with $\Delta_{min} = 0$, then

$$\mathbb{P}\left[\inf_{k\geq 0} \|\nabla f(x_k)\| = 0\right] = 1$$

The $\mathbb{P}[\cdot]$ and $\mathbb{E}[\cdot]$ give the probability and expected value of a random variable

Theorem. For all $\epsilon > 0$, there exist C > 0 and a sufficiently large K s.t.

$$\mathbb{P}\left[\min_{k\leq K} \|\nabla f(x_k)\| \leq \epsilon\right] \geq 1 - e^{-C(K+1)}$$

Theorem. If QARSTA is run with $\Delta_{min} = 0$, then

$$\mathbb{P}\left[\inf_{k\geq 0}\|\nabla f(x_k)\|=0\right]=1$$

Theorem. $\mathbb{E}[\min\{k: \|\nabla f(x_k)\| \le \epsilon\}] = \mathcal{O}(\epsilon^{-2})$

The $\mathbb{P}[\cdot]$ and $\mathbb{E}[\cdot]$ give the probability and expected value of a random variable

1 Introduction

2 Quadratic approximation random subspace trust-region algorithm

3 Convergence analysis

4 Numerical experiments

5 Summary

- Is it beneficial to use quadratic models instead of linear models?
- What is a good choice of p and p_{rand} ?
- Advantages of exploiting the structure of objective functions?

Two sets from the CUTEst collection [Gould, Orban, Toint, 2015] with dimension $n \approx 1000$:

- 73 unconstrained problems with various objective functions
- 32 unconstrained nonlinear least-squares problems, i.e.,

$$\min_{x\in\mathbb{R}^n}f(x)=\frac{1}{2}\sum_{i=1}^mg_i(x)^2$$

Solvers

Models:

- Linear model
- Underdetermined quadratic model
- Determined quadratic model
- Square-of-linear model (on the second problem set only)

Parameters:

- $p = 1, p_{\text{rand}} = 1$
- $p = 10, p_{rand} = 1$
- $p = 10, p_{rand} = 3$
- $p = 10, p_{rand} = 10$

For each solver $\mathcal{S} \in \mathcal{S}$ and problem $\mathcal{P} \in \mathcal{P}$, define the performance ratio

$$r_{P,S} = \frac{t_{P,S}}{\min\{t_{P,S}: S \in \mathcal{S}\}},$$

where $t_{P,S} > 0$ is the performance measure

The performance profile of S is

$$\rho_{\mathcal{S}}(\alpha) = \frac{1}{|\mathcal{P}|} |\{ \mathcal{P} \in \mathcal{P} : r_{\mathcal{P},\mathcal{S}} \leq \alpha \}|$$

For each solver S and problem P with dimension n_P Stopping criteria:

•
$$f(x_k) \le f(x^*) + \tau (f(x_0) - f(x^*))$$
 (success)

or

• more than $100(n_P + 1)$ function evaluations are needed (failure)

If success, then $t_{P,S}$ is the number of function evaluations or the runtime If failure, then $t_{P,S} = \infty$

Comparing linear and quadratic models based on runtime

Comparing linear and quadratic models based on evals

Advantages of exploiting the structure of obj functions

1 Introduction

- 2 Quadratic approximation random subspace trust-region algorithm
- 3 Convergence analysis
- 4 Numerical experiments

In this research, we:

- Provided a *Q*-fully quadratic modeling technique that is easy to analyze and implement
- Proposed an algorithm with convergence analysis for general unconstrained DFO problems
- Demonstrated the efficiency of using quadratic models and exploiting the structure of objective functions

Future directions:

- Compare with other underdetermined quadratic models
- Design better strategies of selecting p and p_{rand}
- Handle constrained DFO problems

Thank you

• Yiwen Chen, Warren Hare, and Amy Wiebe. "Q-fully Quadratic Modeling and its Application in a Random Subspace Derivative-free Method". In: arXiv preprint (2023). URL: https://arxiv.org/abs/2312.03169