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Optimization with blackbox objective function

Consider the optimization problem

min
x∈Rn

f (x)

where f is given by a blackbox:

x f (x)
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Example

Consider a chemical process:

Temperature
Humidity

Reaction time

 = x f (x) = Product purity

Goal:
max{f (x) : x1 ∈ [273, 373], x2 ∈ [30, 60], x3 ∈ [1, 10]}
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Another example

Consider a computer simulation of earthquakes:

Height
Material
Structure

 = x f (x) = Stability of building

Goal:
max{f (x) : x satisfies some constraints}
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Derivative-free optimization (DFO)

Derivative-free optimization is the mathematical study of optimization
algorithms that do not use derivatives

Note: It does not mean that the derivatives do not exist
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Two categories of DFO methods

Direct search methods

Maintain an incumbent solution and check a finite number of trial
points for potential decrease

E.g., Coordinate Search, MADS

Model-based methods

Use function values to build an approximation model of the objective

Use the model to guide future iterations
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Polynomial interpolation

Definition. For a given function f (x) and set Y = {y0, ..., y s}, a
polynomial m(x) is a polynomial interpolation model of f (x) if

m(y i ) = f (y i ), i = 0, ..., s

Note: In practice, m(x) is determined by finding α0, ..., αt such that

m(y i ) =
t∑

j=0

αjϕj(y
i ) = f (y i ), i = 0, ..., s

where the set of functions ϕ = {ϕ0, ..., ϕt} is a polynomial basis
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Linear interpolation model

Let ϕ = {1, x1, x2, ..., xd} and Y = {y0, ..., yd}
Then a linear interpolation model m(x) is determined by finding α0, ..., αd

such that

m(y i ) = α0 + α1y
i
1 + · · ·+ αdy

i
d = f (y i ), i = 0, ..., d

where y ij is the j-th element of y i

9 / 47



Quadratic interpolation model

Let ϕ = {1, x1, x2, ..., xd ,
x21
2 , x1x2, ..., xd−1xd ,

x2d
2 } and Y = {y0, ..., y s}

Then a quadratic interpolation model m(x) is determined by finding
α0, ..., α (d+1)(d+2)

2
−1

such that

m(y i ) = α0 + α1y
i
1 + · · ·+ αdy

i
d

+ αd+1

(
y i1
)2
2

+ · · ·+ α (d+1)(d+2)
2

−1

(
y id
)2

2
= f (y i ), i = 0, ..., s

Note: If s = (d+1)(d+2)
2 − 1 and the system has full rank, then m(x) is

called a determined quadratic interpolation model
If s < (d+1)(d+2)

2 − 1 and the system has full rank, then m(x) is
called an underdetermined quadratic interpolation model
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Model-based DFO: limitations

Limitations:

Function evaluations are too expensive for large problems

d 1 10 100 1000

(d + 1)(d + 2)/2 3 66 5151 501501

They are primarily designed for small- to medium-scale problems
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Improving scalability by subspace decomposition

Idea:

1. Select a low-dimensional affine subspace

2. Build and minimize a model to compute a step in this subspace

3. Change the affine subspace at the next iteration

Some existing papers:
[Zhang, 2012]; [Dzahini, Wild, 2022]; [Menickelly, 2023];
[Cartis, Roberts, 2023]
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The inspirational question

Is it beneficial to use quadratic models instead of linear models?
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Model-based trust-region (MBTR) algorithm

for k = 0, 1, ... do
Construct a model mk in Rn:

mk(s) = f (xk) + g⊤
k s +

1

2
s⊤Hks

Approximately solve the trust-region subproblem in Rn:

sk ≈ argmin
s∈Rn

mk(s), s.t. ∥s∥ ≤ ∆k

Evaluate f (xk + sk) and calculate ratio

ρk =
f (xk)− f (xk + sk)

mk(0)−mk(sk)
=

true decrease

predicted decrease

Accept/reject step based on ρk and update trust region radius
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Random subspace MBTR algorithm

for k = 0, 1, ... do
Define an affine subspace xk + DkRp by selecting Dk ∈ Rn×p

Construct a model “mk in Rp

Approximately solve the trust-region subproblem in Rp:

ŝk ≈ argmin
ŝ∈Rp

“mk(ŝ), s.t. ∥ŝ∥ ≤ ∆k

and calculate the corresponding step sk ∈ Rn

Evaluate f (xk + sk) and calculate ratio

ρk =
f (xk)− f (xk + sk)“mk(0)− “mk(ŝk)

=
true decrease

predicted decrease

Accept/reject step based on ρk and update trust region radius
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Random subspace MBTR algorithm: visuals

∆k
xk

xk + DkRp
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Random subspace MBTR algorithm: visuals

∆k+1

xk+1
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Random subspace MBTR algorithm: visuals

∆k+1

xk+1

xk+
1
+ Dk+

1R
p
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Model construction
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Q-fully quadratic models

Definition. Let f ∈ C2, x ∈ Rn, ∆̄ > 0, and Q ∈ Rn×p

We say that {“m∆ : Rp → R}∆∈(0,∆̄] is a class of Q-fully quadratic models
of f at x if there exist κef (x), κeg (x), κeh(x) > 0 such that for all
∆ ∈ (0, ∆̄] and ∥ŝ∥ ≤ ∆,

|f (x + Qŝ)− “m∆(ŝ)| ≤ κef (x)∆
3,∥∥∥Q⊤∇f (x + Qŝ)−∇“m∆(ŝ)

∥∥∥ ≤ κeg (x)∆
2,∥∥∥Q⊤∇2f (x + Qŝ)Q −∇2“m∆(ŝ)

∥∥∥ ≤ κeh(x)∆
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Generalized simplex gradient

Definition. [Hare, Jarry-Bolduc, 2020]
Let x0 ∈ Rn and D = [d1 · · · dp] ∈ Rn×p

The generalized simplex gradient of f at x0 over D is defined by

∇S f (x
0;D) =

Ä
D⊤
ä†

δf (x
0;D)

where

δf (x
0;D) =


f (x0 + d1)− f (x0)
f (x0 + d2)− f (x0)

...
f (x0 + dp)− f (x0)


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Generalized simplex Hessian

Definition. [Hare, Jarry-Bolduc, Planiden, 2023]
Let x0 ∈ Rn and D = [d1 · · · dp] ∈ Rn×p

The generalized simplex Hessian of f at x0 over D is defined by

∇2
S f (x

0;D) =
Ä
D⊤
ä†

δ∇S f (x
0;D),

where

δ∇S f (x
0;D) =


(
∇S f (x

0 + d1;D)−∇S f (x
0;D)

)⊤(
∇S f (x

0 + d2;D)−∇S f (x
0;D)

)⊤
...(

∇S f (x
0 + dp;D)−∇S f (x

0;D)
)⊤


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Constructing Q-fully quadratic models

Definition. Suppose D = QR has full column rank, where Q ∈ Rn×p

Let

m(x) = f (x0) +
(
2∇S f (x

0;D)−∇S f (x
0; 2D)

)⊤ (
x − x0

)
+

1

2

(
x − x0

)⊤∇2
S f (x

0;D)
(
x − x0

)
The model “m : Rp → R is defined by“m(ŝ) = m(x0 + Qŝ)

The 2∇S f (x
0;D)−∇S f (x

0; 2D) is a special case of the Adapted Centred Simplex
Gradient, see Y. Chen and W. Hare. “Adapting the centred simplex gradient to
compensate for misaligned sample points”. In: IMA J. Numer. Anal. (2023)
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Constructing Q-fully quadratic models

Theorem. “m is a determined quadratic interpolation model of f (x0 + Qŝ)

Theorem. If f ∈ C2+ and D has full-column rank, then “m belongs to a
class of Q-fully quadratic models of f at x0 with constants κef , κeg , κeh
monotonically increasing w.r.t. ∥D†∥
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Subspace selection

24 / 47



α-well-aligned matrices

Definition. [Cartis, Roberts, 2023]
Let f ∈ C1, x ∈ Rn, and α > 0
We say that A ∈ Rn×z is α-well-aligned for f at x if∥∥∥A⊤∇f (x)

∥∥∥ ≥ α ∥∇f (x)∥
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Constructing α-well-aligned matrices

Theorem. [Dzahini, Wild, 2022]
Suppose α, δS ∈ (0, 1) and z ≥ 4(1− α)−2 ln(1/δS)
Let A ∈ Rn×z such that Aij ∼ N (0, 1/z)
Then for any v ∈ Rn,

P
[∥∥∥A⊤v

∥∥∥ ≥ α ∥v∥
]
≥ 1− δS

In particular, given f ∈ C1 and x ∈ Rn, A is α-well-aligned for f at x with
probability at least 1− δS , i.e.,

P
[∥∥∥A⊤∇f (x)

∥∥∥ ≥ α ∥∇f (x)∥
]
≥ 1− δS

The P[·] gives the probability of a random variable
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Can we reuse past information to construct subspaces?

Suppose Dk has the form Dk = [DU
k DR

k ] ∈ Rn×p, where

DU
k ∈ Rn×(p−prand) is picked from Dk−1

DR
k ∈ Rn×prand is randomly generated

DU
k is picked such that σmin(D

U
k ) is as large as possible

DR
k consists of orthogonal columns and col(DR

k ) ⊆ col(DU
k )

⊥
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Constructing Dk

Recall: κef , κeg , κeh monotonically increasing w.r.t. ∥D†
k∥

Idea: Minimize ∥D†
k∥ = 1/σmin(Dk) ⇔ Maximize σmin(Dk)

Theorem. Let ‹D = [d1 · · · dq−1] ∈ Rn×(q−1) where 2 ≤ q ≤ n

Define D(x) : Rn → Rn×q by D(x) = [‹D x ]
Then for all x ∈ Rn with ∥x∥ = ∆, we have

σmin(D(x)) ≤ min
¶
σmin(‹D),∆

©
.

In particular, if x∗ ∈ Rn with ∥x∗∥ = ∆ satisfies d⊤
i x∗ = 0 for all di ∈ ‹D,

then
σmin(D(x∗)) = min

¶
σmin(‹D),∆

©
.
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Constructing DU
k

Idea: σmin(D
U
k ) should be as large as possible

Select p directions to previous sample points as the columns of DU
k

for removed = 1, ..., prand do
Denote DU

k = [dU
1 · · · dU

m ]
for i = 1, ...,m do

Define Mi =
[
dU
1 · · · dU

i−1 dU
i+1 · · · dU

m

]
and compute

θi = σmin(Mi ) ·max

(∥∥dU
i

∥∥4
∆4

k+1

, 1

)

Remove the direction with the largest θi from DU
k
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Constructing DR
k

Idea: DR
k consists of orthogonal columns and col(DR

k ) ⊆ col(DU
k )

⊥

Generate A ∈ Rn×prand with Aij ∼ N (0, 1/prand)

Factorize DU
k = QR and calculate Ã = A− QQ⊤A

Factorize Ã = ‹QR̃
Return ∆k

‹Q
Algorithm modified from C. Cartis and L. Roberts. “Scalable subspace methods for

derivative-free nonlinear least-squares optimization”. In: Math. Program. 199.1-2
(2023), pp. 461–524
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Subspace quality

Theorem. Suppose f ∈ C1, α, δS ∈ (0, 1) and prand ≥ 4(1− α)−2 ln(1/δS)
Then there exists αD > 0 such that Dk is αD-well-aligned for f at xk with
probability at least 1− δS
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QARSTA

for k = 0, 1, ... do
Define an affine subspace xk + DkRp by selecting Dk = [DU

k DR
k ]

Construct a Qk -fully quadratic model “mk in Rp

Approximately solve the trust-region subproblem in Rp:

ŝk ≈ argmin
ŝ∈Rp

“mk(ŝ), s.t. ∥ŝ∥ ≤ ∆k

and calculate the corresponding step sk ∈ Rn

Evaluate f (xk + sk) and calculate ratio

ρk =
f (xk)− f (xk + sk)“mk(0)− “mk(ŝk)

=
true decrease

predicted decrease

Accept/reject step based on ρk and update trust region radius
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Assumptions

f ∈ C2+ and bounded below

∥∇2“mk∥ ≤ κH for all k

Solution ŝk of the trust-region subproblem satisfy“mk(0)− “mk(ŝk) ≥
1

2
∥∇“mk(0)∥min

Å
∆k ,

∥∇“mk(0)∥
max {∥∇2“mk∥ , 1}

ã
Each Dk is αD-well-aligned for f at xk with probability at least 1− δS
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Convergence results

Theorem. For all ϵ > 0, there exist C > 0 and a sufficiently large K s.t.

P
ï
min
k≤K

∥∇f (xk)∥ ≤ ϵ

ò
≥ 1− e−C(K+1)

Theorem. If QARSTA is run with ∆min = 0, then

P
ï
inf
k≥0

∥∇f (xk)∥ = 0

ò
= 1

Theorem. E [min {k : ∥∇f (xk)∥ ≤ ϵ}] = O(ϵ−2)

The P[·] and E[·] give the probability and expected value of a random variable
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Questions

Is it beneficial to use quadratic models instead of linear models?

What is a good choice of p and prand?

Advantages of exploiting the structure of objective functions?
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Test problems

Two sets from the CUTEst collection [Gould, Orban, Toint, 2015] with
dimension n ≈ 1000:

73 unconstrained problems with various objective functions

32 unconstrained nonlinear least-squares problems, i.e.,

min
x∈Rn

f (x) =
1

2

m∑
i=1

gi (x)
2
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Solvers

Models:

Linear model

Underdetermined quadratic model

Determined quadratic model

Square-of-linear model (on the second problem set only)

Parameters:

p = 1, prand = 1

p = 10, prand = 1

p = 10, prand = 3

p = 10, prand = 10
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Performance profiles

For each solver S ∈ S and problem P ∈ P, define the performance ratio

rP,S =
tP,S

min{tP,S : S ∈ S}
,

where tP,S > 0 is the performance measure

The performance profile of S is

ρS(α) =
1

|P|
|{P ∈ P : rP,S ≤ α}|
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Stopping criteria and performance measure

For each solver S and problem P with dimension nP
Stopping criteria:

f (xk) ≤ f (x∗) + τ (f (x0)− f (x∗)) (success)
or

more than 100(nP + 1) function evaluations are needed (failure)

If success, then tP,S is the number of function evaluations or the runtime
If failure, then tP,S = ∞
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Comparing linear and quadratic models based on runtime
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Comparing linear and quadratic models based on evals
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Advantages of exploiting the structure of obj functions
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Summary

In this research, we:

Provided a Q-fully quadratic modeling technique that is easy to
analyze and implement

Proposed an algorithm with convergence analysis for general
unconstrained DFO problems

Demonstrated the efficiency of using quadratic models and exploiting
the structure of objective functions

Future directions:

Compare with other underdetermined quadratic models

Design better strategies of selecting p and prand

Handle constrained DFO problems
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