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© Introduction
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Optimization with blackbox objective function

Consider the optimization problem
min f(x)

x€eR"

where f is given by a blackbox:

—
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Consider a chemical process:

Temperature
Humidity =x —> - —> f(x) = Product purity
Reaction time

Goal:
max{f(x) : x; € [273,373],x» € [30,60],x3 € [1,10]}
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Another example

Consider a computer simulation of earthquakes:

Height
Material » =x — - —> f(x) = Stability of building
Structure

Goal:
max{f(x) : x satisfies some constraints}
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Derivative-free optimization (DFO)

Derivative-free optimization is the mathematical study of optimization
algorithms that do not use derivatives

Note: It does not mean that the derivatives do not exist
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Two categories of DFO methods

Direct search methods

@ Maintain an incumbent solution and check a finite number of trial
points for potential decrease

e E.g., Coordinate Search, MADS

7/47



Two categories of DFO methods

Direct search methods

@ Maintain an incumbent solution and check a finite number of trial
points for potential decrease

e E.g., Coordinate Search, MADS

Model-based methods
@ Use function values to build an approximation model of the objective

@ Use the model to guide future iterations
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Polynomial interpolation

Definition. For a given function f(x) and set Y = {)°,...,y*}, a
polynomial m(x) is a polynomial interpolation model of f(x) if
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Polynomial interpolation

Definition. For a given function f(x) and set Y = {)°,...,y*}, a
polynomial m(x) is a polynomial interpolation model of f(x) if

Note: In practice, m(x) is determined by finding ag, ..., a; such that
. t . .
m(y) = Y asi(y) = Fy), i=0,.s
j=0

where the set of functions ¢ = {¢o, ..., ®+} is a polynomial basis
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Linear interpolation model

Let ¢ = {1,x1,%0,...,xq4} and Y = {y0, ..., y9}
Then a linear interpolation model m(x) is determined by finding ap, ..., ag

such that
m(y") = ap + a1yf + -+ agyl = f(y), i=0,...d

where yJ’ is the j-th element of y'
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Quadratic interpolation model

X2 X2 0
Let ¢ = {1,x1,X2, ..., Xd, 3, X1X2, ..., Xd—1Xd, 5} and Y = {y", ..., y°}

Then a quadratic interpolation model m(x) is determined by finding

QO -oy QU (d41)(d4+2) 4 such that
2

m(yi) =ao + 041)/{ + o+ achil

() i)
+ Qgt1 ; +"‘+Oé(d+1)(d+2)_l%:f(y’), i=0,..,s
2
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Quadratic interpolation model

X2 X2
Let ¢ = {1,x1,X2, ..., Xd, 5, X1X2, ..., Xd—1Xd, 5 } and Y = {0 ...y}
Then a quadratic interpolation model m(x) is determined by finding
QO -oy QU (d41)(d4+2) 4 such that
2

m(yi) =ao + 041)/{ + o+ Oédy(i/

i 2
1
(y;) oo awagen g =), =0,

+ g1

Note: If s = w — 1 and the system has full rank, then m(x) is

called a determined quadratic interpolation model
If s < eréﬂ — 1 and the system has full rank, then m(x) is
called an underdetermined quadratic interpolation model
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Model-based DFO: limitations

Limitations:

@ Function evaluations are too expensive for large problems

d 110 100 | 1000
(d+1)(d+2)/2 | 3|66 | 5151 | 501501

@ They are primarily designed for small- to medium-scale problems

11/47



Improving scalability by subspace decomposition

Idea:
1. Select a low-dimensional affine subspace
2. Build and minimize a model to compute a step in this subspace
3. Change the affine subspace at the next iteration

Some existing papers:

[Zhang, 2012]; [Dzahini, Wild, 2022]; [Menickelly, 2023];
[Cartis, Roberts, 2023]
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The inspirational question

Is it beneficial to use quadratic models instead of linear models?
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© Quadratic approximation random subspace trust-region algorithm
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Model-based trust-region (MBTR) algorithm

for k=0,1,... do
Construct a model my in R™:

1
mi(s) = f(xk) + g/ s+ ESTHks
Approximately solve the trust-region subproblem in R":

s ~ argmin my(s), s.t. ||s|| < Ay
sER"

Evaluate f(xx + sk) and calculate ratio

f(xk) — f(xk +sk)  true decrease

Pk = mi(0) — my(sk) ~ predicted decrease

Accept/reject step based on px and update trust region radius
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Random subspace MBTR algorithm

for k=0,1,... do
Define an affine subspace x, + D¢ RP by selecting D, € R"P
Construct a model my in RP

Approximately solve the trust-region subproblem in RP:

Sk & argmin mk(3), s.t. ||5]] < Ak
SERP
and calculate the corresponding step s, € R”
Evaluate f(xx + s¢) and calculate ratio

f(xk) — f(xk +5sk)  true decrease
mi(0) — mx(Sk)  predicted decrease

Pk =

Accept/reject step based on py and update trust region radius
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Random subspace MBTR algorithm: visuals
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Random subspace MBTR algorithm: visuals
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Random subspace MBTR algorithm: visuals
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Random subspace MBTR algorithm: visuals
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Model construction
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Q-fully quadratic models

Definition. Let f € C2,x € R",A >0, and Q € R"*P
We say that {ma : RP — R}AG(O,A] is a class of Q-fully quadratic models

of f at x if there exist Ker(x), Keg(X), Ken(x) > 0 such that for all
A € (0,A] and ||5]| < A,

IF(x + Q3) — MA(S)] < ker(x)A3,
HQTW(X 4 Qs) - vaA(g)H < g (x) A2,

| @7V (x + @9)@ - V2 (8) | < ken()2
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Generalized simplex gradient

Definition. [Hare, Jarry-Bolduc, 2020]
Let x> € R" and D = [dy - - - dp] € R"™*P
The generalized simplex gradient of f at x? over D is defined by

Vsf(x; D) = (D7) 6:(x% D)

where
f(x0 +d) — f(xz)

s |58

O+ dp) — F(x)
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Generalized simplex Hessian

Definition. [Hare, Jarry-Bolduc, Planiden, 2023]
Let xX° € R" and D = [dy - - - dp] € R"™*P
The generalized simplex Hessian of f at x° over D is defined by

V2£(x% D) = (D7) 5u,¢(x D),

where

(Vsf(x0 +di; D) — Vsf(x% D))

Sver(x%; D) = (Vsf(x®+ do; D). — Vsf(x°; D))T

(Vsf(x° + dp; D) — VsF(x% D)) "
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Constructing Q-fully quadratic models

Definition. Suppose D = QR has full column rank, where Q € R"*P

Let
m(x) = f(x°) + (2V5f(x0; D) — Vsf(x°; 2D))T (x — xo)

+ = (x— XO)T Vif(x% D) (x — xo)

N =~

The model m : RP — R is defined by

mi(3) = m(x° + Q3)

The 2Vsf(x°; D) — Vsf(x% 2D) is a special case of the Adapted Centred Simplex
Gradient, see Y. Chen and W. Hare. “Adapting the centred simplex gradient to

compensate for misaligned sample points”. In: IMA J. Numer. Anal. (2023)
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Constructing Q-fully quadratic models

Theorem. m is a determined quadratic interpolation model of f(x° 4 @3)
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Constructing Q-fully quadratic models

Theorem. m is a determined quadratic interpolation model of f(x° 4 @3)
Theorem. If f € C?>T and D has full-column rank, then m belongs to a

class of Q-fully quadratic models of f at x® with constants ke, Kegs Keh
monotonically increasing w.r.t. ||Df||
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Subspace selection

24 /47



a-well-aligned matrices

Definition. [Cartis, Roberts, 2023]
Let f e Cl,x € R", and a > 0
We say that A € R"*Z is a-well-aligned for f at x if

|ATVE )| = a IV FGl
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Constructing a-well-aligned matrices

Theorem. [Dzahini, Wild, 2022]

Suppose a,ds € (0,1) and z > 4(1 — a)~2In(1/8s)
Let A € R"*# such that Aj ~ N(0,1/z)

Then for any v € R”,

Pl|aTv]zalvi] =1~

The P[] gives the probability of a random variable
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Constructing a-well-aligned matrices

Theorem. [Dzahini, Wild, 2022]

Suppose a,ds € (0,1) and z > 4(1 — a)~2In(1/8s)
Let A € R"*# such that Aj ~ N(0,1/z)

Then for any v € R”,

Pl|aTv]zalvi] =1~

In particular, given f € C! and x € R, A is a-well-aligned for f at x with
probability at least 1 — g, i.e.,

P ATV | 2 IV GOl = 1- 5

The P[] gives the probability of a random variable
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Can we reuse past information to construct subspaces?

Suppose Dy has the form Dy = [DY DE] € R™P, where
° D,ﬂj € R™(P=Prand) is picked from Dj_q

° D;f € RM*Prand is randomly generated
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Can we reuse past information to construct subspaces?

Suppose Dy has the form Dy = [DY DE] € R™P, where
° D,ﬂj € R™(P=Prand) is picked from Dj_q
° D;f € RM*Prand is randomly generated
° D,fj is picked such that Um;n(Dly) is as large as possible
e DF consists of orthogonal columns and col(DF) C col(DY)*
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Constructing Dy

_ . . . +
Recall: Kef, Keg, en monotonically increasing w.r.t. ||D,||
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Constructing Dy

Recall: Kef, Keg, Ken monotonically increasing w.r.t. HD;EH
Idea: Minimize HD;EH = 1/0min(Dk) < Maximize omin(Dk)
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Constructing Dy

Recall: Kef, Keg, Ken monotonically increasing w.r.t. HD;EH
Idea: Minimize HD;EH = 1/0min(Dk) < Maximize omin(Dk)

Theorem. Let D = [dy---dg_1] € R™(971) where 2 < g < n

Define D(x) : R” — R"™9 by D(x) = [D x|
Then for all x € R” with ||x|| = A, we have

Fmin(D(x)) < min {omin(D), A} .
In particular, if x* € R with ||x*|| = A satisfies d, x* = 0 for all d; € D,

then N
Omin(D(x")) = min {omin(D), A} .

28 /47



Constructing D/

Idea: am;n(D,f/) should be as large as possible

Select p directions to previous sample points as the columns of D,y
for removed = 1, ..., prang do
Denote DY = [dY - - dY]
fori=1,...,mdo
Define M; = [d ---dY; dY,---dY] and compute

HaiUH4 )
9,’ = Omin M,‘ - Max ,].
( ) ( At—f—l

Remove the direction with the largest ¢; from DV

29 /47



Constructing D

Idea: D consists of orthogonal columns and col(Df) C col(D{)*

Generate A € R"*Prand with A ~ N(O 1/prand)
Factorize Dk = QR and calculate A= A — QQTA

Factorize A QR
Return AkQ

Algorithm modified from C. Cartis and L. Roberts. “Scalable subspace methods for
derivative-free nonlinear least-squares optimization”. In: Math. Program. 199.1-2
(2023), pp. 461-524
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Subspace quality

Theorem. Suppose f € C*,a,ds € (0,1) and prang > 4(1 — a)~2In(1/8s)
Then there exists ap > 0 such that Dy is ap-well-aligned for f at xx with
probability at least 1 — dg
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QARSTA

for k=0,1,... do
Define an affine subspace xx + DxRP by selecting Dy = [D,ﬁj Df]
Construct a Qy-fully quadratic model my in RP

Approximately solve the trust-region subproblem in RP:

Sk & argmin mk(3), s.t. ||5]] < Ak
SeRp
and calculate the corresponding step s, € R”
Evaluate f(xx + sx) and calculate ratio

f(xk) — f(xx +5sk)  true decrease
mi(0) — m(Sk)  predicted decrease

Pk =

Accept/reject step based on py and update trust region radius
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© Convergence analysis
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e f € C?** and bounded below
o |V2my|| < kp for all k

@ Solution 5 of the trust-region subproblem satisfy

- T _ IV (0)| )
_ > —
Ak (0) — Mk (Sk) = 5 [[VA(0)] min (Ak’ max {[[ V2|, 1}

@ Each Dy is ap-well-aligned for f at xj, with probability at least 1 — dg
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Convergence results

Theorem. For all € > 0, there exist C > 0 and a sufficiently large K s.t.

P [min IV F(xi)]|| < e} >1— e C(KH)
k<K

The P[] and E[-] give the probability and expected value of a random variable
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Convergence results

Theorem. For all € > 0, there exist C > 0 and a sufficiently large K s.t.
P [min IV F(xi)]|| < e} >1— e C(KH)
k<K
Theorem. If QARSTA is run with A, = 0, then

| 19/(x0)]| =0] =1

The P[] and E[-] give the probability and expected value of a random variable
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Convergence results

Theorem. For all € > 0, there exist C > 0 and a sufficiently large K s.t.
P [min IV F(xi)]|| < e} >1— e C(KH)
k<K
Theorem. If QARSTA is run with A, = 0, then
| 19/(x0)]| =0] =1

Theorem. E [min{k : |Vf(xk)|| < €}] = 0(672)

The P[-] and E[-] give the probability and expected value of a random variable
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@ Numerical experiments
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@ Is it beneficial to use quadratic models instead of linear models?
@ What is a good choice of p and pyang?

@ Advantages of exploiting the structure of objective functions?
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Test problems

Two sets from the CUTEst collection [Gould, Orban, Toint, 2015] with
dimension n ~ 1000:

@ 73 unconstrained problems with various objective functions

@ 32 unconstrained nonlinear least-squares problems, i.e.,

min f(x) = % > &i(x)?
i=1

x€R"
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Solvers

Models:
@ Linear model
@ Underdetermined quadratic model
@ Determined quadratic model

@ Square-of-linear model (on the second problem set only)

Parameters:
© p=1pana =1
 p=10,prang =1
e p =10, prana =3
o p =10, prand = 10
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Performance profiles

For each solver S € S and problem P € P, define the performance ratio

tps
min{tps:S €S}’

rp,s =

where tp s > 0 is the performance measure

The performance profile of S is

ps(a) = | HPeP:rps < a}

|P| P
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Stopping criteria and performance measure

For each solver S and problem P with dimension np
Stopping criteria:

o f(xk) < f(x*)+ 7 (f(x0) — f(x*)) (success)
or

e more than 100(np + 1) function evaluations are needed (failure)

If success, then tp s is the number of function evaluations or the runtime
If failure, then tp s = oo
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Comparing linear and quadratic models based on runtime

Performance profile (n=1000), T =0.001

0.8 4 o~

Linear (p =1, Prana = 1)
Linear (p =10, Prand = 1)

Linear (p = 10, Prand = 3)

===~ Linear (p =10, Prand = 10)
Underdetermined Quadratic (p =1, Prana = 1)
Underdetermined Quadratic (p = 10, prand = 1)

Underdetermined Quadratic (p = 10, Prand = 3)

Proportion of problems solved

—-&-- Underdetermined Quadratic (p =10, prans = 10)
Determined Quadratic (p =1, Prana = 1)
Determined Quadratic {p =10, prand = 1)

—-#-— Determined Quadratic (p =10, Prang = 3)

75 10.0 125 15.0 17.5
Runtime / minimum runtime of any solver

—--+—- Determined Quadratic (p =10, Prang = 10)
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Comparing linear and quadratic models based on evals

Proportion of problems solved

Performance profile (n=1000), T =0.001

o
EY
s

o
o
s

o
S
L

o
N
L

Evaluations / minimum evaluations of any solver

-

===

J—

Linear (p =1, Prana = 1)

Linear (p =10, prana = 1)

Linear (p =10, Prand = 3)

Linear (p =10, Prang = 10)

Underdetermined Quadratic (p =1, Prana = 1)
Underdetermined Quadratic {(p =10, prand = 1)
Underdetermined Quadratic (p = 10, Prand = 3)
Underdetermined Quadratic (p =10, Prang = 10)
Determined Quadratic (p =1, Prana = 1)
Determined Quadratic {p =10, prand = 1)
Determined Quadratic (p = 10, Prang = 3)
Determined Quadratic (p =10, prana = 10)
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Advantages of exploiting the structure of obj functions

Performance profile (n = 1000), T=0.001

10
|FP - ——— Pf=———r— Pmmfm——— ===

[ A et

¢

|
T osi
=
=]
W
0
qE; 0.6
% .............. —
g | —SEs o sETgoisiE -0 N - S
= .
5 00l <oeaee- Linear (p =10, prang = 1)
c 0
S —-3-— Linear (p =10, Prang = 3)
2
g —%—— Square of Linear (p=1, prang = 1)
g 0.2 ----¥---- Square of Linear (p= 10, prang = 1)

—-#-— Square of Linear (p= 10, prand = 3)
——¥-— Square of Linear (p= 10, prang = 10)
0.0+ , : . ; T T T T —&— DFBGN (p=1)
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Evaluations / minimum evaluations of any solver <& DFBGN (p=10)
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© Summary
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In this research, we:
@ Provided a Q-fully quadratic modeling technique that is easy to
analyze and implement

@ Proposed an algorithm with convergence analysis for general
unconstrained DFO problems

@ Demonstrated the efficiency of using quadratic models and exploiting
the structure of objective functions

Future directions:
@ Compare with other underdetermined quadratic models

@ Design better strategies of selecting p and prang
@ Handle constrained DFO problems
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Thank you

@ Yiwen Chen, Warren Hare, and Amy Wiebe. “Q-fully Quadratic Modeling
and its Application in a Random Subspace Derivative-free Method”. In:
arXiv preprint (2023). URL: https://arxiv.org/abs/2312.03169
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