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Introduction

Simplex Gradient, SG

Consider
f : Rn → R

and a set
Y = {y0, y0 + d1, ..., y0 + dn}

poised for linear interpolation

The Simplex Gradient of f over Y, denoted by ∇S f (Y), is the gradient of
the linear interpolation of f over Y

Yiwen Chen (BUAA, UBC) Adapted-CSG July 20, 2022 3 / 30



Introduction

An equivalent definition

Suppose Y is poised
Then

∇S f (Y) = L−>δ
f (Y)
S

where

L = L (Y) = [y0 + d1 − y0 · · · y0 + dn − y0] = [d1 · · · dn] ,

δ
f (Y)
S =

f (y0 + d1)− f (y0)
...

f (y0 + dn)− f (y0)


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Introduction

Centred Simplex Gradient, CSG

The reflection a poised set Y+ = {y0, y0 + d1, ..., y0 + dn} through y0

Y− = {y0, y0 − d1, ..., y0 − dn}
Y− is also poised

The Centred Simplex Gradient of f over Y = Y+ ∪ Y−, denoted by
∇CS f (Y), is given by

∇CS f (Y) =
1

2

(
∇S f (Y+) +∇S f (Y−)

)

Is equivalent to

∇CS f (Y) =
(
L+ − L−

)−> (
δ
f (Y+)
S − δf (Y−)

S

)
where L+ = L(Y+), L− = L(Y−)
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Introduction

Approximation accuracy

Let ∆ = diam(Y+) := max
i
{‖yi − y0‖}

Then

‖∇f (y0)−∇S f (y0)‖ = O(∆)

‖∇f (y0)−∇CS f (y0)‖ = O(∆2)
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Introduction

In this talk...

CSG requires

A point of interest y0

A poised set Y+

An exact reflection set Y−

What if the reflection set of Y+ is not exact?
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Introduction

Misaligned reflection set

Suppose the reflection set of Y+ is not exact

Ỹ is provided instead, with Ỹ ≈ Y−

Centred Simplex Gradient:

∇CS f (Y) =
(
L+ − L−

)−> (
δ
f (Y+)
S − δf (Y−)

S

)
An ‘obvious’ approximate gradient would be

∇f (y0) ≈
Ä
L+ − L̃

ä−> (
δ
f (Y+)
S − δf (Ỹ)

S

)
However...
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Introduction
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Introduction

A simple example

Example. Let f = x2, y0 = 0,Y+ = {0,∆}, Ỹ = {0,−0.9∆}
Then

L+ =∆

L̃ =− 0.9∆

δ
f (Y+)
S =f (∆)− f (0) = ∆2

δ
f (Ỹ)
S =f (−0.9∆)− f (0) = 0.81∆2

So Ä
L+ − L̃

ä−> (
δ
f (Y+)
S − δf (Ỹ)

S

)
= 0.1∆∥∥∥∇f (y0)−

Ä
L+ − L̃

ä−> (
δ
f (Y+)
S − δf (Ỹ)

S

)∥∥∥ = 0.1∆ = O(∆)
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Adapted Centred Simplex Gradient

Structure of Ỹ relative to Y−

Let Y+ = {y0, y0 + d1, ..., y0 + dn}, Ỹ = {y0, y0 − d̃1, ..., y0 − d̃n}

y0

y0 + d1

y0 + d2

y0 − d2

y0 − d1

y0 − d̃2
y0 − d̃1

θ2

θ1
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Adapted Centred Simplex Gradient

Structure of Ỹ relative to Y−

For all i ∈ {1, ..., n},
The Stretching Parameter ki is given by

ki =

∥∥∥d̃i∥∥∥
‖di‖

The Rotation Angle θi is the angle between di and d̃i , given by

θi = cos−1

Ñ
d>i d̃i

‖di‖
∥∥∥d̃i∥∥∥

é
∈ [0, π]

Yiwen Chen (BUAA, UBC) Adapted-CSG July 20, 2022 13 / 30



Adapted Centred Simplex Gradient
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Adapted Centred Simplex Gradient

Adapted Centred Simplex Gradient, ACSG

The Adapted Centered Simplex Gradient of f over Y = Y+ ∪ Ỹ, denoted
by ∇ACS f (Y), is given by

∇ACS f (Y) =
Ä
L+D − L̃

ä−> (
Dδ

f (Y+)
S − δf (Ỹ)

S

)
where

D =

k
2
1

. . .

k2
n



Note:

When all θi = 0 and ki = 1, ∇ACS f (Y) = ∇CS f (Y)
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Error analysis

Error bound

Theorem. f ∈ C2+ on B∆̄(y0) with constant C , diam(Y+), diam(Ỹ) ≤ ∆̄
Then

‖∇f (y0)−∇ACS f (Y)‖ ≤K

2
max

{
k2
i

}√
n

∥∥∥∥∥
Å
L̂+D − ̂̃Lã−1

∥∥∥∥∥max {θi}∆

+
C

6
max

{
k2
i (1 + ki )

}√
n

∥∥∥∥∥
Å
L̂+D − ̂̃Lã−1

∥∥∥∥∥∆2

where

∆ = diam(Y+), L̂+ =
1

∆
L+,

̂̃
L =

1

∆
L̃
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Error analysis

Error bound

Theorem. f ∈ C2+ on B∆̄(y0) with constant C , diam(Y+), diam(Ỹ) ≤ ∆̄
Then

‖∇f (y0)−∇ACS f (Y)‖ ≤κθ max {θi}∆ + κ∆∆2

=O(Θ∆ + ∆2)

I.e., ACSG has O(Θ∆ + ∆2) accuracy, where Θ = max{θi}

Yiwen Chen (BUAA, UBC) Adapted-CSG July 20, 2022 17 / 30



Error analysis

Proof overview

Part 1: Suppose all θi = 0, by Taylor expansion

f (y0 + di ) = f (y0) +∇f (y0)>di +
1

2
d>i ∇2f (y0)di +O(∆3) (1)

f (y0 − d̃i ) = f (y0)− ki∇f (y0)>di +
1

2
k2
i d
>
i ∇2f (y0)di +O(∆3) (2)

Applying k2
i (1)-(2), we have

k2
i (f (y0 + di )− f (y0))−

Ä
f (y0 − d̃i )− f (y0)

ä
=∇f (y0)>

(
k2
i di + kidi

)
+O(∆3)

(3)

Using techniques similar to Simplex Gradient analysis, we obtain

‖∇f (y0)−∇ACS f (Y)‖ ≤ κ∆∆2
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Error analysis

Part 2: Suppose all ki = 1, by Taylor expansion

f (y0 + di ) = f (y0) +∇f (y0)>di +
1

2
d>i ∇2f (y0)di +O(∆3) (4)

f (y0 − d̃i ) = f (y0)−∇f (y0)>Aθidi +
1

2
d>i A>θi∇

2f (y0)Aθidi +O(∆3) (5)

Applying (4)-(5), we have

f (y0 + di )− f (y0 − d̃i )

=∇f (y0)> (di + Aθidi ) +
1

2
d>i
Ä
∇2f (y0)− A>θi∇

2f (y0)Aθi

ä
di +O(∆3)

(6)
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Error analysis

Separate
∇2f (y0)− A>θi∇

2f (y0)Aθi

into two symmetric matrices S1 and S2, so∣∣∣∣12d>i Ä∇2f (y0)− A>θi∇
2f (y0)Aθi

ä
di

∣∣∣∣ ≤ ∣∣∣∣12d>i S1di

∣∣∣∣+

∣∣∣∣12d>i S2di

∣∣∣∣
≤1

2
(max {|λS1 |}+ max {|λS2 |}) ‖di‖

2

≤κmax {θi}∆2

Using techniques similar to Simplex Gradient analysis, we obtain

‖∇f (y0)−∇ACS f (Y)‖ ≤ κθ max {θi}∆ + κ∆∆2

Part 3: Combine Part 1 and Part 2
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Numerical experiments

Comparison to the direct generalization

Two formulae:

∇f (y0) ≈
Ä
L+ − L̃

ä−> (
δ
f (Y+)
S − δf (Ỹ)

S

)
(Direct Generalization)

∇f (y0) ≈
Ä
L+D − L̃

ä−> (
Dδ

f (Y+)
S − δf (Ỹ)

S

)
(ACSG)

Test problems:

f (x) =
n∑

i=1
[sin(ixi ) + cos(ixi )] at y0 = e1

f (x) = e−‖x‖
2

at y0 = e1
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Numerical experiments

θ = 0, k = 0.75

f (x) =
n∑

i=1

[sin(ixi ) + cos(ixi )] f (x) = e−‖x‖
2
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Numerical experiments

θ = 0, k = 1

f (x) =
n∑

i=1

[sin(ixi ) + cos(ixi )] f (x) = e−‖x‖
2
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Numerical experiments

θ = 0, k = 1.25

f (x) =
n∑

i=1

[sin(ixi ) + cos(ixi )] f (x) = e−‖x‖
2
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Numerical experiments

Other experiments

Comparison to the direct generalization:

Fix θ = 0.1, repeat previous experiments

Result: Similar pattern as θ = 0

Relation of error to θ:

Fix k ≈ 1, consider θ ∈ {1, 10−1, 10−2, 10−3, 10−10}, shrink ∆

Result: As θ → 0, error goes from O(∆) to O(∆2)

Recall: ACSG has O(Θ∆ + ∆2) accuracy, where Θ = max{θi}
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Numerical experiments

Other experiments

Relation of error to k :

Fix θ = 0, consider k ∈ {1, 101, 102, 104, 1016, 1064, 10128}, shrink ∆

Result: As k →∞, ACSG goes from CSG to SG

Proof:

lim
k→∞

Ä
L+D − L̃

ä−> (
Dδ

f (Y+)
S − δf (Ỹ)

S

)
= lim

k→∞

(
L+
)−>

D−>Dδ
f (Y+)
S

=
(
L+
)−>

δ
f (Y+)
S

=∇S f (Y+)
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Conclusions

Conclusions

Summary

We generalized CSG and developed ACSG

ACSG has O(Θ∆ + ∆2) accuracy, where Θ = max{θi}
When Y is not perfectly symmetric, ACSG outperforms CSG

ACSG could be used to reduce functions calls in DFO algorithms

Next steps

Develop algorithms to find the best pair of Y+ and Ỹ efficiently

Explore properties of underdetermined and overdetermined ACSG
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Conclusions

Thank you
Chen, Hare. Adapting the Centred Simplex Gradient to Compensate for
Misaligned Sample Points. Preprint available by emailing
yiwchen@student.ubc.ca or warren.hare@ubc.ca
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