Adjusting the Centred Simplex Gradient to Compensate for Misaligned Sample Points

Yiwen Chen^{1,2}

¹School of Mathematical Sciences Beihang University

²Department of Mathematics University of British Columbia

July 20, 2022

Joint work with Dr. Warren Hare

• • = • • = •

Outline

- Adapted Centred Simplex Gradient
- 3 Error analysis
- 4 Numerical experiments
- 5 Conclusions

イロト イヨト イヨト イヨト

Simplex Gradient, SG

Consider

$$f:\mathbb{R}^n\to\mathbb{R}$$

and a set

$$\mathbb{Y} = \{y_0, y_0 + d_1, ..., y_0 + d_n\}$$

poised for linear interpolation

The Simplex Gradient of f over \mathbb{Y} , denoted by $\nabla_S f(\mathbb{Y})$, is the gradient of the linear interpolation of f over \mathbb{Y}

A (10) × A (10) × A (10)

An equivalent definition

 $\begin{array}{l} \text{Suppose } \mathbb{Y} \text{ is poised} \\ \text{Then} \end{array}$

$$\nabla_{\mathcal{S}}f(\mathbb{Y}) = L^{-\top}\delta_{\mathcal{S}}^{f(\mathbb{Y})}$$

where

$$L = L(\mathbb{Y}) = [y_0 + d_1 - y_0 \cdots y_0 + d_n - y_0] = [d_1 \cdots d_n],$$

$$\delta_{S}^{f(\mathbb{Y})} = \begin{bmatrix} f(y_{0} + d_{1}) - f(y_{0}) \\ \vdots \\ f(y_{0} + d_{n}) - f(y_{0}) \end{bmatrix}$$

Yiwen Chen (BUAA, UBC)

Let 1 20, 2022 4 / 30

イロト イヨト イヨト イヨト

Centred Simplex Gradient, CSG

The reflection a poised set $\mathbb{Y}^+ = \{y_0, y_0 + d_1, ..., y_0 + d_n\}$ through y_0

•
$$\mathbb{Y}^- = \{y_0, y_0 - d_1, ..., y_0 - d_n\}$$

• \mathbb{Y}^- is also poised

The Centred Simplex Gradient of f over $\mathbb{Y} = \mathbb{Y}^+ \cup \mathbb{Y}^-$, denoted by $\nabla_{CS} f(\mathbb{Y})$, is given by

$$abla_{CS}f(\mathbb{Y}) = rac{1}{2}\left(
abla_{S}f(\mathbb{Y}^{+}) +
abla_{S}f(\mathbb{Y}^{-})
ight)$$

イロト イヨト イヨト イヨト

Centred Simplex Gradient, CSG

The reflection a poised set $\mathbb{Y}^+ = \{y_0, y_0 + d_1, ..., y_0 + d_n\}$ through y_0

•
$$\mathbb{Y}^- = \{y_0, y_0 - d_1, ..., y_0 - d_n\}$$

• \mathbb{Y}^- is also poised

The Centred Simplex Gradient of f over $\mathbb{Y} = \mathbb{Y}^+ \cup \mathbb{Y}^-$, denoted by $\nabla_{CS} f(\mathbb{Y})$, is given by

$$abla_{CS}f(\mathbb{Y})=rac{1}{2}\left(
abla_{S}f(\mathbb{Y}^{+})+
abla_{S}f(\mathbb{Y}^{-})
ight)$$

Is equivalent to

$$abla_{\textit{CS}} f(\mathbb{Y}) = \left(L^+ - L^-\right)^{- op} \left(\delta_{\mathcal{S}}^{f(\mathbb{Y}^+)} - \delta_{\mathcal{S}}^{f(\mathbb{Y}^-)}
ight)$$

where $L^+ = L(\mathbb{Y}^+), \quad L^- = L(\mathbb{Y}^-)$

Approximation accuracy

Let
$$\Delta = \overline{\operatorname{diam}}(\mathbb{Y}^+) \coloneqq \max_i \left\{ \|y_i - y_0\|
ight\}$$

Then

•
$$\|\nabla f(y_0) - \nabla_S f(y_0)\| = \mathcal{O}(\Delta)$$

•
$$\|\nabla f(y_0) - \nabla_{CS} f(y_0)\| = \mathcal{O}(\Delta^2)$$

<ロト < 四ト < 三ト < 三ト

In this talk ...

CSG requires

- A point of interest y_0
- A poised set \mathbb{Y}^+
- An exact reflection set \mathbb{Y}^-

What if the reflection set of \mathbb{Y}^+ is not exact?

► < Ξ >

Misaligned reflection set

Suppose the reflection set of $\ensuremath{\mathbb{Y}}^+$ is not exact

• $\widetilde{\mathbb{Y}}$ is provided instead, with $\widetilde{\mathbb{Y}}\approx\mathbb{Y}^-$

• • = • •

Misaligned reflection set

Suppose the reflection set of $\ensuremath{\mathbb{Y}}^+$ is not exact

• $\widetilde{\mathbb{Y}}$ is provided instead, with $\widetilde{\mathbb{Y}}\approx\mathbb{Y}^-$

Centred Simplex Gradient:

$$\nabla_{CS} f(\mathbb{Y}) = \left(L^{+} - L^{-}\right)^{-\top} \left(\delta_{S}^{f(\mathbb{Y}^{+})} - \delta_{S}^{f(\mathbb{Y}^{-})}\right)$$

→ Ξ →

Misaligned reflection set

Suppose the reflection set of $\ensuremath{\mathbb{Y}^+}$ is not exact

• $\widetilde{\mathbb{Y}}$ is provided instead, with $\widetilde{\mathbb{Y}}\approx\mathbb{Y}^-$

Centred Simplex Gradient:

$$abla_{CS}f(\mathbb{Y}) = \left(L^+ - L^-
ight)^{- op} \left(\delta_S^{f(\mathbb{Y}^+)} - \delta_S^{f(\mathbb{Y}^-)}
ight)$$

An 'obvious' approximate gradient would be

$$\nabla f(y_0) \approx \left(L^+ - \widetilde{L}\right)^{-\top} \left(\delta_{\mathcal{S}}^{f(\mathbb{Y}^+)} - \delta_{\mathcal{S}}^{f(\widetilde{\mathbb{Y}})}\right)$$

However...

★ ∃ ► ★

Approximation accuracy

Let
$$\Delta = \overline{\operatorname{diam}}(\mathbb{Y}^+) \coloneqq \max_i \left\{ \|y_i - y_0\|
ight\}$$

Then

•
$$\|\nabla f(y_0) - \nabla_S f(y_0)\| = \mathcal{O}(\Delta)$$

•
$$\|\nabla f(y_0) - \nabla_{CS} f(y_0)\| = \mathcal{O}(\Delta^2)$$

<ロト < 四ト < 三ト < 三ト

Approximation accuracy

Let
$$\Delta = \overline{\operatorname{diam}}(\mathbb{Y}^+) \coloneqq \max_i \{ \|y_i - y_0\| \}$$

Then

•
$$\|\nabla f(y_0) - \nabla_S f(y_0)\| = \mathcal{O}(\Delta)$$

• $\|\nabla f(y_0) - \nabla_{CS} f(y_0)\| = \mathcal{O}(\Delta^2)$
• $\|\nabla f(y_0) - (L^+ - \widetilde{L})^{-\top} (\delta_S^{f(\mathbb{Y}^+)} - \delta_S^{f(\widetilde{\mathbb{Y}})})\| = \mathcal{O}(\Delta^2) ?$

< □ > < □ > < □ > < □ > < □ >

A simple example

Example. Let $f = x^2$, $y_0 = 0$, $\mathbb{Y}^+ = \{0, \Delta\}$, $\widetilde{\mathbb{Y}} = \{0, -0.9\Delta\}$ Then

$$L^{+} = \Delta$$
$$\widetilde{L} = -0.9\Delta$$
$$\delta_{S}^{f(\mathbb{Y}^{+})} = f(\Delta) - f(0) = \Delta^{2}$$
$$\delta_{S}^{f(\widetilde{\mathbb{Y}})} = f(-0.9\Delta) - f(0) = 0.81\Delta^{2}$$

So

$$\left(L^{+} - \widetilde{L}\right)^{-\top} \left(\delta_{S}^{f(\mathbb{Y}^{+})} - \delta_{S}^{f(\widetilde{\mathbb{Y}})}\right) = 0.1\Delta$$
$$\left\|\nabla f(y_{0}) - \left(L^{+} - \widetilde{L}\right)^{-\top} \left(\delta_{S}^{f(\mathbb{Y}^{+})} - \delta_{S}^{f(\widetilde{\mathbb{Y}})}\right)\right\| = 0.1\Delta = \mathcal{O}(\Delta)$$

イロト イボト イヨト イヨト

Outline

2 Adapted Centred Simplex Gradient

Error analysis

A D N A B N A B N A B N

Structure of $\widetilde{\mathbb{Y}}$ relative to \mathbb{Y}^-

Let
$$\mathbb{Y}^+ = \{y_0, y_0 + d_1, ..., y_0 + d_n\}, \widetilde{\mathbb{Y}} = \{y_0, y_0 - \widetilde{d}_1, ..., y_0 - \widetilde{d}_n\}$$

3

A D N A B N A B N A B N

Structure of $\widetilde{\mathbb{Y}}$ relative to \mathbb{Y}^-

For all $i \in \{1, ..., n\}$,

• The Stretching Parameter k_i is given by

$$k_i = \frac{\left\|\widetilde{d}_i\right\|}{\left\|d_i\right\|}$$

Structure of $\widetilde{\mathbb{Y}}$ relative to \mathbb{Y}^-

For all $i \in \{1, ..., n\}$,

• The Stretching Parameter k_i is given by

$$k_i = \frac{\left\|\widetilde{d}_i\right\|}{\left\|d_i\right\|}$$

• The Rotation Angle θ_i is the angle between d_i and \tilde{d}_i , given by

$$\theta_i = \cos^{-1}\left(\frac{d_i^{\top}\widetilde{d}_i}{\|d_i\| \|\widetilde{d}_i\|}\right) \in [0,\pi]$$

Adapted Centred Simplex Gradient, ACSG

The Adapted Centered Simplex Gradient of f over $\mathbb{Y} = \mathbb{Y}^+ \cup \widetilde{\mathbb{Y}}$, denoted by $\nabla_{ACS} f(\mathbb{Y})$, is given by

$$\nabla_{ACS} f(\mathbb{Y}) = \left(L^+ D - \widetilde{L} \right)^{-\top} \left(D \delta_{S}^{f(\mathbb{Y}^+)} - \delta_{S}^{f(\widetilde{\mathbb{Y}})} \right)$$

where

$$D = \begin{bmatrix} k_1^2 & & \\ & \ddots & \\ & & k_n^2 \end{bmatrix}$$

Adapted Centred Simplex Gradient, ACSG

The Adapted Centered Simplex Gradient of f over $\mathbb{Y} = \mathbb{Y}^+ \cup \widetilde{\mathbb{Y}}$, denoted by $\nabla_{ACS} f(\mathbb{Y})$, is given by

$$\nabla_{ACS} f(\mathbb{Y}) = \left(L^+ D - \widetilde{L} \right)^{-\top} \left(D \delta_{S}^{f(\mathbb{Y}^+)} - \delta_{S}^{f(\widetilde{\mathbb{Y}})} \right)$$

where

$$D = \begin{bmatrix} k_1^2 & & \\ & \ddots & \\ & & & k_n^2 \end{bmatrix}$$

Note:

• When all $\theta_i = 0$ and $k_i = 1$, $\nabla_{ACS} f(\mathbb{Y}) = \nabla_{CS} f(\mathbb{Y})$

Outline

2 Adapted Centred Simplex Gradient

3 Error analysis

4 Numerical experiments

5 Conclusions

A D N A B N A B N A B N

Error bound

Theorem. $f \in C^{2+}$ on $B_{\overline{\Delta}}(y_0)$ with constant C, $\overline{\operatorname{diam}}(\mathbb{Y}^+), \overline{\operatorname{diam}}(\widetilde{\mathbb{Y}}) \leq \overline{\Delta}$ Then

$$\begin{aligned} \|\nabla f(y_0) - \nabla_{ACS} f(\mathbb{Y})\| &\leq \frac{K}{2} \max\left\{k_i^2\right\} \sqrt{n} \left\| \left(\widehat{L}^+ D - \widehat{\widetilde{L}}\right)^{-1} \right\| \max\left\{\theta_i\right\} \Delta \\ &+ \frac{C}{6} \max\left\{k_i^2 \left(1 + k_i\right)\right\} \sqrt{n} \left\| \left(\widehat{L}^+ D - \widehat{\widetilde{L}}\right)^{-1} \right\| \Delta^2 \end{aligned}$$

where

$$\Delta = \overline{\operatorname{diam}}(\mathbb{Y}^+), \ \ \widehat{L}^+ = \frac{1}{\Delta}L^+, \ \ \widehat{\widetilde{L}} = \frac{1}{\Delta}\widetilde{L}$$

イロト 不得下 イヨト イヨト 二日

Error bound

Theorem. $f \in C^{2+}$ on $B_{\overline{\Delta}}(y_0)$ with constant C, $\overline{\operatorname{diam}}(\mathbb{Y}^+), \overline{\operatorname{diam}}(\widetilde{\mathbb{Y}}) \leq \overline{\Delta}$ Then

$$egin{aligned} \|
abla f(y_0) -
abla_{\mathcal{ACS}} f(\mathbb{Y})\| &\leq \kappa_ heta \max\left\{ heta_i
ight\} \Delta + \kappa_\Delta \Delta^2 \ &= \mathcal{O}(\Theta \Delta + \Delta^2) \end{aligned}$$

I.e., ACSG has $\mathcal{O}(\Theta\Delta + \Delta^2)$ accuracy, where $\Theta = \max\{\theta_i\}$

イロト 不得下 イヨト イヨト 二日

Error analysis

Proof overview

Part 1: Suppose all $\theta_i = 0$, by Taylor expansion

$$f(y_0 + d_i) = f(y_0) + \nabla f(y_0)^\top d_i + \frac{1}{2} d_i^\top \nabla^2 f(y_0) d_i + \mathcal{O}(\Delta^3)$$
(1)

$$f(y_0 - \widetilde{d}_i) = f(y_0) - k_i \nabla f(y_0)^\top d_i + \frac{1}{2} k_i^2 d_i^\top \nabla^2 f(y_0) d_i + \mathcal{O}(\Delta^3)$$
(2)

イロト イポト イヨト イヨト

Error analysis

Proof overview

Part 1: Suppose all $\theta_i = 0$, by Taylor expansion

$$f(y_0 + d_i) = f(y_0) + \nabla f(y_0)^\top d_i + \frac{1}{2} d_i^\top \nabla^2 f(y_0) d_i + \mathcal{O}(\Delta^3)$$
(1)

$$f(y_0 - \tilde{d}_i) = f(y_0) - k_i \nabla f(y_0)^\top d_i + \frac{1}{2} k_i^2 d_i^\top \nabla^2 f(y_0) d_i + \mathcal{O}(\Delta^3)$$
(2)

Applying $k_i^2(1)$ -(2), we have

$$k_{i}^{2} (f(y_{0} + d_{i}) - f(y_{0})) - (f(y_{0} - \widetilde{d}_{i}) - f(y_{0}))$$

= $\nabla f(y_{0})^{\top} (k_{i}^{2} d_{i} + k_{i} d_{i}) + \mathcal{O}(\Delta^{3})$ (3)

イロト イポト イヨト イヨト

Error analysis

Proof overview

Part 1: Suppose all $\theta_i = 0$, by Taylor expansion

$$f(y_0 + d_i) = f(y_0) + \nabla f(y_0)^{\top} d_i + \frac{1}{2} d_i^{\top} \nabla^2 f(y_0) d_i + \mathcal{O}(\Delta^3)$$
(1)

$$f(y_0 - \tilde{d}_i) = f(y_0) - k_i \nabla f(y_0)^\top d_i + \frac{1}{2} k_i^2 d_i^\top \nabla^2 f(y_0) d_i + \mathcal{O}(\Delta^3)$$
(2)

Applying $k_i^2(1)$ -(2), we have

$$k_{i}^{2} (f(y_{0} + d_{i}) - f(y_{0})) - (f(y_{0} - \widetilde{d}_{i}) - f(y_{0}))$$

= $\nabla f(y_{0})^{\top} (k_{i}^{2} d_{i} + k_{i} d_{i}) + \mathcal{O}(\Delta^{3})$ (3)

Using techniques similar to Simplex Gradient analysis, we obtain

$$\|
abla f(y_0) -
abla_{ACS} f(\mathbb{Y})\| \leq \kappa_\Delta \Delta^2$$

(日) (四) (日) (日) (日)

Part 2: Suppose all $k_i = 1$, by Taylor expansion

$$f(y_0 + d_i) = f(y_0) + \nabla f(y_0)^\top d_i + \frac{1}{2} d_i^\top \nabla^2 f(y_0) d_i + \mathcal{O}(\Delta^3)$$
(4)

$$f(y_0 - \widetilde{d}_i) = f(y_0) - \nabla f(y_0)^\top A_{\theta_i} d_i + \frac{1}{2} d_i^\top A_{\theta_i}^\top \nabla^2 f(y_0) A_{\theta_i} d_i + \mathcal{O}(\Delta^3)$$
(5)

イロト イヨト イヨト イヨト

Part 2: Suppose all $k_i = 1$, by Taylor expansion

$$f(y_0 + d_i) = f(y_0) + \nabla f(y_0)^\top d_i + \frac{1}{2} d_i^\top \nabla^2 f(y_0) d_i + \mathcal{O}(\Delta^3)$$
(4)

$$f(y_0 - \widetilde{d}_i) = f(y_0) - \nabla f(y_0)^\top A_{\theta_i} d_i + \frac{1}{2} d_i^\top A_{\theta_i}^\top \nabla^2 f(y_0) A_{\theta_i} d_i + \mathcal{O}(\Delta^3)$$
(5)

Applying (4)-(5), we have

$$f(y_0 + d_i) - f(y_0 - \widetilde{d}_i)$$

= $\nabla f(y_0)^\top (d_i + A_{\theta_i} d_i) + \frac{1}{2} d_i^\top (\nabla^2 f(y_0) - A_{\theta_i}^\top \nabla^2 f(y_0) A_{\theta_i}) d_i + \mathcal{O}(\Delta^3)$
(6)

イロト イポト イヨト イヨト

Separate

$$abla^2 f(y_0) - A_{ heta_i}^\top
abla^2 f(y_0) A_{ heta_i}$$

into two symmetric matrices S_1 and S_2 , so

$$\begin{split} \left| \frac{1}{2} d_i^\top \left(\nabla^2 f(y_0) - A_{\theta_i}^\top \nabla^2 f(y_0) A_{\theta_i} \right) d_i \right| &\leq \left| \frac{1}{2} d_i^\top S_1 d_i \right| + \left| \frac{1}{2} d_i^\top S_2 d_i \right| \\ &\leq \frac{1}{2} \left(\max\left\{ |\lambda_{S_1}| \right\} + \max\left\{ |\lambda_{S_2}| \right\} \right) \|d_i\|^2 \\ &\leq \kappa \max\left\{ \theta_i \right\} \Delta^2 \end{split}$$

A D N A B N A B N A B N

Separate

$$abla^2 f(y_0) - A_{ heta_i}^\top
abla^2 f(y_0) A_{ heta_i}$$

into two symmetric matrices S_1 and S_2 , so

$$\begin{split} \left| \frac{1}{2} d_i^\top \left(\nabla^2 f(y_0) - A_{\theta_i}^\top \nabla^2 f(y_0) A_{\theta_i} \right) d_i \right| &\leq \left| \frac{1}{2} d_i^\top S_1 d_i \right| + \left| \frac{1}{2} d_i^\top S_2 d_i \right| \\ &\leq \frac{1}{2} \left(\max\left\{ |\lambda_{S_1}| \right\} + \max\left\{ |\lambda_{S_2}| \right\} \right) \|d_i\|^2 \\ &\leq \kappa \max\left\{ \theta_i \right\} \Delta^2 \end{split}$$

Using techniques similar to Simplex Gradient analysis, we obtain

$$\|
abla f(y_0) -
abla_{ACS} f(\mathbb{Y})\| \le \kappa_{ heta} \max\left\{ heta_i
ight\} \Delta + \kappa_{\Delta} \Delta^2$$

Image: A match a ma

Separate

$$abla^2 f(y_0) - A_{ heta_i}^\top
abla^2 f(y_0) A_{ heta_i}$$

into two symmetric matrices S_1 and S_2 , so

$$\begin{split} \left| \frac{1}{2} d_i^\top \left(\nabla^2 f(y_0) - A_{\theta_i}^\top \nabla^2 f(y_0) A_{\theta_i} \right) d_i \right| &\leq \left| \frac{1}{2} d_i^\top S_1 d_i \right| + \left| \frac{1}{2} d_i^\top S_2 d_i \right| \\ &\leq \frac{1}{2} \left(\max\left\{ |\lambda_{S_1}| \right\} + \max\left\{ |\lambda_{S_2}| \right\} \right) \|d_i\|^2 \\ &\leq \kappa \max\left\{ \theta_i \right\} \Delta^2 \end{split}$$

Using techniques similar to Simplex Gradient analysis, we obtain

$$\|
abla f(y_0) -
abla_{ACS} f(\mathbb{Y})\| \le \kappa_{ heta} \max\left\{ heta_i\right\} \Delta + \kappa_{\Delta} \Delta^2$$

Part 3: Combine Part 1 and Part 2

▶ < ∃ ▶</p>

Outline

- Adapted Centred Simplex Gradient
- 3 Error analysis
- 4 Numerical experiments

5 Conclusions

A D N A B N A B N A B N

Comparison to the direct generalization

Two formulae:

•
$$\nabla f(y_0) \approx \left(L^+ - \widetilde{L}\right)^{-\top} \left(\delta_S^{f(\mathbb{Y}^+)} - \delta_S^{f(\widetilde{\mathbb{Y}})}\right)$$
 (Direct Generalization)
• $\nabla f(y_0) \approx \left(L^+ D - \widetilde{L}\right)^{-\top} \left(D\delta_S^{f(\mathbb{Y}^+)} - \delta_S^{f(\widetilde{\mathbb{Y}})}\right)$ (ACSG)

Test problems:

•
$$f(x) = \sum_{i=1}^{n} [\sin(ix_i) + \cos(ix_i)]$$
 at $y_0 = e_1$
• $f(x) = e^{-\|x\|^2}$ at $y_0 = e_1$

(日) (四) (日) (日) (日)

$\theta = 0, k = 0.75$

< ∃⇒

$\theta = 0, k = 1$

< ∃⇒

→ < Ξ →</p>

$\theta = 0, k = 1.25$

< ∃⇒

→ < Ξ →</p>

Other experiments

Comparison to the direct generalization:

- Fix $\theta = 0.1$, repeat previous experiments
- Result: Similar pattern as $\theta = 0$

(日) (四) (日) (日) (日)

Other experiments

Comparison to the direct generalization:

- Fix $\theta = 0.1$, repeat previous experiments
- Result: Similar pattern as $\theta = 0$

Relation of error to θ :

- Fix $k \approx 1$, consider $\theta \in \{1, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-10}\}$, shrink Δ
- Result: As $\theta \to 0$, error goes from $\mathcal{O}(\Delta)$ to $\mathcal{O}(\Delta^2)$

Recall: ACSG has $\mathcal{O}(\Theta \Delta + \Delta^2)$ accuracy, where $\Theta = \max\{\theta_i\}$

(4) (日本)

Other experiments

Relation of error to k:

- Fix $\theta = 0$, consider $k \in \{1, 10^1, 10^2, 10^4, 10^{16}, 10^{64}, 10^{128}\}$, shrink Δ
- Result: As $k \to \infty$, ACSG goes from CSG to SG

Proof:

$$\begin{split} &\lim_{k \to \infty} \left(L^+ D - \widetilde{L} \right)^{-\top} \left(D \delta_{\mathcal{S}}^{f(\mathbb{Y}^+)} - \delta_{\mathcal{S}}^{f(\widetilde{\mathbb{Y}})} \right) \\ &= \lim_{k \to \infty} \left(L^+ \right)^{-\top} D^{-\top} D \delta_{\mathcal{S}}^{f(\mathbb{Y}^+)} \\ &= \left(L^+ \right)^{-\top} \delta_{\mathcal{S}}^{f(\mathbb{Y}^+)} \\ &= \nabla_{\mathcal{S}} f(\mathbb{Y}^+) \end{split}$$

(日) (四) (日) (日) (日)

Outline

- 2 Adapted Centred Simplex Gradient
- 3 Error analysis
- 4 Numerical experiments

A D N A B N A B N A B N

Conclusions

Summary

- We generalized CSG and developed ACSG
- ACSG has $\mathcal{O}(\Theta\Delta + \Delta^2)$ accuracy, where $\Theta = \max\{\theta_i\}$
- \bullet When $\mathbb {Y}$ is not perfectly symmetric, ACSG outperforms CSG
- ACSG could be used to reduce functions calls in DFO algorithms

Next steps

- \bullet Develop algorithms to find the best pair of \mathbb{Y}^+ and $\widetilde{\mathbb{Y}}$ efficiently
- Explore properties of underdetermined and overdetermined ACSG

Thank you

• Chen, Hare. Adapting the Centred Simplex Gradient to Compensate for Misaligned Sample Points. Preprint available by emailing yiwchen@student.ubc.ca or warren.hare@ubc.ca

→ 3 → 4 3